Well-Ordering Principles in Proof Theory and Reverse Mathematics

Michael Rathjen

University of Leeds

Logic Colloquium 2019

Praha, 14 & 15 August 2019

► Proof Theory and Set Theory.

- Proof Theory and Set Theory.
- Set Theory takes much of the Infinite for granted: Full Separation, Powerset,

- Proof Theory and Set Theory.
- Set Theory takes much of the Infinite for granted: Full Separation, Powerset,
- Proof Theory aims to analyze the Infinite from a stance of "Potential Infinity".

- Proof Theory and Set Theory.
- Set Theory takes much of the Infinite for granted: Full Separation, Powerset,
- Proof Theory aims to analyze the Infinite from a stance of "Potential Infinity".
- On the one hand Proof Theory is concerned with concrete objects (e.g. theories, proofs, ordinal representation systems), but on the other hand it also deals with ideal properties (e.g., well-foundedness, preservation of wf).

- Proof Theory and Set Theory.
- Set Theory takes much of the Infinite for granted: Full Separation, Powerset,
- Proof Theory aims to analyze the Infinite from a stance of "Potential Infinity".
- On the one hand Proof Theory is concerned with concrete objects (e.g. theories, proofs, ordinal representation systems), but on the other hand it also deals with ideal properties (e.g., well-foundedness, preservation of wf).
- Sometimes the proof-theoretic ordinal of a theory T is defined as the supremum of its provable prim. rec. or computable well-orderings, |T|_{sup}.

- Proof Theory and Set Theory.
- Set Theory takes much of the Infinite for granted: Full Separation, Powerset,
- Proof Theory aims to analyze the Infinite from a stance of "Potential Infinity".
- On the one hand Proof Theory is concerned with concrete objects (e.g. theories, proofs, ordinal representation systems), but on the other hand it also deals with ideal properties (e.g., well-foundedness, preservation of wf).
- Sometimes the proof-theoretic ordinal of a theory T is defined as the supremum of its provable prim. rec. or computable well-orderings, |T|_{sup}.
- This is misleading!

- Proof Theory and Set Theory.
- Set Theory takes much of the Infinite for granted: Full Separation, Powerset,
- Proof Theory aims to analyze the Infinite from a stance of "Potential Infinity".
- On the one hand Proof Theory is concerned with concrete objects (e.g. theories, proofs, ordinal representation systems), but on the other hand it also deals with ideal properties (e.g., well-foundedness, preservation of wf).
- Sometimes the proof-theoretic ordinal of a theory T is defined as the supremum of its provable prim. rec. or computable well-orderings, |T|_{sup}.
- This is misleading!
- Sometimes ORS's are treated as just computable well-orderings.

- Proof Theory and Set Theory.
- Set Theory takes much of the Infinite for granted: Full Separation, Powerset,
- Proof Theory aims to analyze the Infinite from a stance of "Potential Infinity".
- On the one hand Proof Theory is concerned with concrete objects (e.g. theories, proofs, ordinal representation systems), but on the other hand it also deals with ideal properties (e.g., well-foundedness, preservation of wf).
- Sometimes the proof-theoretic ordinal of a theory T is defined as the supremum of its provable prim. rec. or computable well-orderings, |T|_{sup}.
- This is misleading!
- Sometimes ORS's are treated as just computable well-orderings.
- The study of computable well-orderings has a long tradition in logic, also RM, but it's not of much interest to proof theory.

- Proof Theory and Set Theory.
- Set Theory takes much of the Infinite for granted: Full Separation, Powerset,
- Proof Theory aims to analyze the Infinite from a stance of "Potential Infinity".
- On the one hand Proof Theory is concerned with concrete objects (e.g. theories, proofs, ordinal representation systems), but on the other hand it also deals with ideal properties (e.g., well-foundedness, preservation of wf).
- Sometimes the proof-theoretic ordinal of a theory T is defined as the supremum of its provable prim. rec. or computable well-orderings, |T|_{sup}.
- This is misleading!
- Sometimes ORS's are treated as just computable well-orderings.
- The study of computable well-orderings has a long tradition in logic, also RM, but it's not of much interest to proof theory.
- One needs a general theory of *ordinal representations systems*.

1. Part I:

1.1 Ordinal Representation Systems

- $1.1\,$ Ordinal Representation Systems
- 1.2 Well-ordering Principles

- 1.1 Ordinal Representation Systems
- 1.2 Well-ordering Principles
- 1.3 Reverse Mathematics

- 1.1 Ordinal Representation Systems
- 1.2 Well-ordering Principles
- 1.3 Reverse Mathematics
- 1.4 Omega models

- 1.1 Ordinal Representation Systems
- 1.2 Well-ordering Principles
- 1.3 Reverse Mathematics
- 1.4 Omega models
- 1.5 Search Trees

1. Part I:

- 1.1 Ordinal Representation Systems
- 1.2 Well-ordering Principles
- 1.3 Reverse Mathematics
- 1.4 Omega models
- 1.5 Search Trees

2. Part II:

2.1 Higher-Order Well-ordering Principles

1. Part I:

- 1.1 Ordinal Representation Systems
- 1.2 Well-ordering Principles
- 1.3 Reverse Mathematics
- 1.4 Omega models
- 1.5 Search Trees

- 2.1 Higher-Order Well-ordering Principles
- 2.2 Dilators and Denotation Systems

1. Part I:

- 1.1 Ordinal Representation Systems
- 1.2 Well-ordering Principles
- 1.3 Reverse Mathematics
- 1.4 Omega models
- 1.5 Search Trees

- 2.1 Higher-Order Well-ordering Principles
- 2.2 Dilators and Denotation Systems
- 2.3 β -models and comprehension

For many mathematical theorems τ , there is a weakest natural subsystem $S(\tau)$ of Z_2 such that $S(\tau)$ proves τ . Moreover, it has turned out that $S(\tau)$ often belongs to a small list of specific subsystems of Z_2 . Reverse Mathematics has singled out five subsystems of Z_2 :

► **RCA**₀ Recursive Comprehension

For many mathematical theorems τ , there is a weakest natural subsystem $S(\tau)$ of Z_2 such that $S(\tau)$ proves τ . Moreover, it has turned out that $S(\tau)$ often belongs to a small list of specific subsystems of Z_2 . Reverse Mathematics has singled out five subsystems of Z_2 :

- ► **RCA**₀ Recursive Comprehension
- ► WKL₀ Weak König's Lemma

For many mathematical theorems τ , there is a weakest natural subsystem $S(\tau)$ of Z_2 such that $S(\tau)$ proves τ . Moreover, it has turned out that $S(\tau)$ often belongs to a small list of specific subsystems of Z_2 . Reverse Mathematics has singled out five subsystems of Z_2 :

- ► RCA₀ Recursive Comprehension
- ► WKL₀ Weak König's Lemma
- ► ACA₀ Arithmetical Comprehension

For many mathematical theorems τ , there is a weakest natural subsystem $S(\tau)$ of Z_2 such that $S(\tau)$ proves τ . Moreover, it has turned out that $S(\tau)$ often belongs to a small list of specific subsystems of Z_2 . Reverse Mathematics has singled out five subsystems of Z_2 :

- ► **RCA**₀ Recursive Comprehension
- ► WKL₀ Weak König's Lemma
- ► ACA₀ Arithmetical Comprehension
- ► ATR₀ Arithmetical Transfinite Recursion

For many mathematical theorems τ , there is a weakest natural subsystem $S(\tau)$ of **Z**₂ such that $S(\tau)$ proves τ . Moreover, it has turned out that $S(\tau)$ often belongs to a small list of specific subsystems of Z_2 . Reverse Mathematics has singled out five subsystems of Z_2 :

- ► RCA₀ **Recursive Comprehension**
- ▶ WKL₀ Weak König's Lemma
- Arithmetical Comprehension
- \blacktriangleright ATR₀
- Arithmetical Transfinite Recursion • $(\Pi_1^1 - \mathbf{CA})_0$ Π_1^1 -Comprehension

To present a general proof-theoretic machinery for investigating statements about well-orderings from a reverse mathematics point of view.

To present a general proof-theoretic machinery for investigating statements about well-orderings from a reverse mathematics point of view.

These statements are of the form WOP(f)

"if X is well ordered then f(X) is well ordered"

where f is a standard proof theoretic function from ordinals to ordinals.

To present a general proof-theoretic machinery for investigating statements about well-orderings from a reverse mathematics point of view.

These statements are of the form WOP(f)

"if X is well ordered then f(X) is well ordered"

where f is a standard proof theoretic function from ordinals to ordinals.

There are by now several examples of functions f where the statement WOP(f) has turned out to be equivalent to one of the theories of reverse mathematics over a weak base theory (usually RCA_0).

$$2^{\mathfrak{X}} := (|2^{X}|, <_{2^{X}})$$

$$2^{\mathfrak{X}} := (|2^{X}|, <_{2^{X}})$$

Theorem: (Girard 1987) Over **RCA**₀ the following are equivalent:

$$2^{\mathfrak{X}} := (|2^{X}|, <_{2^{X}})$$

Theorem: (Girard 1987) Over \mathbf{RCA}_0 the following are equivalent:

1. Arithmetical Comprehension

$$2^{\mathfrak{X}} := (|2^{X}|, <_{2^{X}})$$

Theorem: (Girard 1987) Over **RCA**₀ the following are equivalent:

- 1. Arithmetical Comprehension
- 2. $\forall \mathfrak{X} [WO(\mathfrak{X}) \rightarrow WO(2^{\mathfrak{X}})].$

$$2^{\mathfrak{X}} := (|2^{X}|, <_{2^{X}})$$

Theorem: (Girard 1987) Over **RCA**₀ the following are equivalent:

- 1. Arithmetical Comprehension
- 2. $\forall \mathfrak{X} [WO(\mathfrak{X}) \rightarrow WO(2^{\mathfrak{X}})].$
$2^{\mathfrak{X}}$ and Arithmetical Comprehension

$$2^{\mathfrak{X}} := (|2^{X}|, <_{2^{X}})$$

Theorem: (Girard 1987) Over **RCA**₀ the following are equivalent:

- 1. Arithmetical Comprehension
- 2. $\forall \mathfrak{X} [WO(\mathfrak{X}) \rightarrow WO(2^{\mathfrak{X}})].$

Slogan: one quantifier = one exponential

$2^{\mathfrak{X}}$ and Arithmetical Comprehension

$$2^{\mathfrak{X}} := (|2^{X}|, <_{2^{X}})$$

Theorem: (Girard 1987) Over **RCA**₀ the following are equivalent:

- 1. Arithmetical Comprehension
- 2. $\forall \mathfrak{X} [WO(\mathfrak{X}) \rightarrow WO(2^{\mathfrak{X}})].$

Slogan: one quantifier = one exponential

 $2^{\mathfrak{X}}$ is effectively computable from \mathfrak{X} .

$2^{\mathfrak{X}}$ and Arithmetical Comprehension

$$2^{\mathfrak{X}} := (|2^{X}|, <_{2^{X}})$$

Theorem: (Girard 1987) Over **RCA**₀ the following are equivalent:

- 1. Arithmetical Comprehension
- 2. $\forall \mathfrak{X} [WO(\mathfrak{X}) \rightarrow WO(2^{\mathfrak{X}})].$

Slogan: one quantifier = one exponential

 $2^{\mathfrak{X}}$ is effectively computable from \mathfrak{X} .

Abstract property WO of real object $2^{\mathfrak{X}}$ versus existence of abstract sets **ACA**.

Cantor's Representation of Ordinals

Theorem (Cantor, 1897) For every ordinal $\beta > 0$ there exist unique ordinals $\beta_0 \ge \beta_1 \ge \cdots \ge \beta_n$ such that

$$\beta = \omega^{\beta_0} + \ldots + \omega^{\beta_n}. \tag{1}$$

The representation of β in (1) is called the **Cantor normal form**.

L

We shall write $\beta =_{CNF} \omega^{\beta_1} + \cdots + \omega^{\beta_n}$ to convey that $\beta_0 \ge \beta_1 \ge \cdots \ge \beta_k$.

A Representation for ε_0

▶ ε_0 denotes the least ordinal $\alpha > 0$ such that

$$\beta < \alpha \ \Rightarrow \ \omega^\beta < \alpha.$$

A Representation for ε_0

▶ ε_0 denotes the least ordinal $\alpha > 0$ such that

$$\beta < \alpha \ \Rightarrow \ \omega^{\beta} < \alpha.$$

• ε_0 is the least ordinal α such that $\omega^{\alpha} = \alpha$.

A Representation for ε_0

• ε_0 denotes the least ordinal $\alpha > 0$ such that

$$\beta < \alpha \ \Rightarrow \ \omega^{\beta} < \alpha.$$

- ε_0 is the least ordinal α such that $\omega^{\alpha} = \alpha$.
- β < ε₀ has a Cantor normal form with exponents β_i < β and these exponents have Cantor normal forms with yet again smaller exponents. As this process must terminate, ordinals < ε₀ can be coded by natural numbers.

The theory $\boldsymbol{\mathsf{ACA}}_0^+$

The theory ACA_0^+

ACA₀⁺ is **ACA**₀ plus the axiom $\forall X \exists Y [(Y)_0 = X \land \forall n (Y)_{n+1} = jump((Y)_n)].$

The theory ACA_0^+

ACA₀⁺ is **ACA**₀ plus the axiom $\forall X \exists Y [(Y)_0 = X \land \forall n (Y)_{n+1} = jump((Y)_n)].$ The theory ACA_0^+

 ACA_0^+ is ACA_0 plus the axiom

$$\forall X \exists Y [(Y)_0 = X \land \forall n (Y)_{n+1} = \mathsf{jump}((Y)_n)]$$

 Hindman's Theorem and the Auslander/Ellis theorem are provable in ACA⁺₀.

$\varepsilon_{\mathfrak{X}}$ and \textbf{ACA}_0^+

1. ACA_0^+

- $1. \ \textbf{ACA}_0^+$
- 2. $\forall \mathfrak{X} [WO(\mathfrak{X}) \rightarrow WO(\varepsilon_{\mathfrak{X}})].$

- $1. \ \textbf{ACA}_0^+$
- 2. $\forall \mathfrak{X} [WO(\mathfrak{X}) \rightarrow WO(\varepsilon_{\mathfrak{X}})].$

$\varepsilon_{\mathfrak{X}}$ and ACA_0^+

Theorem: Over **RCA**₀ the following are equivalent:

1. ACA_0^+

2. $\forall \mathfrak{X} [WO(\mathfrak{X}) \rightarrow WO(\varepsilon_{\mathfrak{X}})].$

 A. Marcone, A. Montalbán: The epsilon function for computability theorists, draft, 2007.

$\varepsilon_{\mathfrak{X}}$ and ACA_0^+

Theorem: Over **RCA**₀ the following are equivalent:

1. ACA_0^+

2. $\forall \mathfrak{X} [WO(\mathfrak{X}) \rightarrow WO(\varepsilon_{\mathfrak{X}})].$

- A. Marcone, A. Montalbán: The epsilon function for computability theorists, draft, 2007.
- B. Afshari, R.: Reverse Mathematics and Well-ordering Principles: A pilot study, APAL 160 (2009) 231-237.

The ordering $<_{\varepsilon_{\mathfrak{X}}}$

Let $\mathfrak{X} = \langle X, <_X \rangle$ be an ordering where $X \subseteq \mathbb{N}$. $<_{\varepsilon_{\mathfrak{X}}}$ and its field $|\varepsilon_{\mathfrak{X}}|$ are inductively defined as follows: 1. $0 \in |\varepsilon_{\mathfrak{X}}|$. 2. $\varepsilon_u \in |\varepsilon_{\mathfrak{X}}|$ for every $u \in X$, where $\varepsilon_u := \langle 0, u \rangle$. 3. If $\alpha_1, \ldots, \alpha_n \in |\varepsilon_{\mathfrak{X}}|$, n > 1 and $\alpha_n \leq_{\varepsilon_{\mathfrak{X}}} \ldots \leq_{\varepsilon_{\mathfrak{X}}} \alpha_1$, then $\omega^{\alpha_1} + \ldots + \omega^{\alpha_n} \in |\varepsilon_{\mathfrak{X}}|$ where $\omega^{\alpha_1} + \ldots + \omega^{\alpha_n} := \langle 1, \langle \alpha_1, \ldots, \alpha_n \rangle \rangle$.

4. If $\alpha \in |\varepsilon_{\mathfrak{X}}|$ and α is not of the form ε_u , then $\omega^{\alpha} \in |\varepsilon_{\mathfrak{X}}|$, where $\omega^{\alpha} := \langle 2, \alpha \rangle$.

1.
$$0 <_{\varepsilon_{\mathfrak{X}}} \varepsilon_{u}$$
 for all $u \in X$.
2. $0 <_{\varepsilon_{\mathfrak{X}}} \omega^{\alpha_{1}} + \ldots + \omega^{\alpha_{n}}$ for all $\omega^{\alpha_{1}} + \ldots + \omega^{\alpha_{n}} \in |\varepsilon_{\mathfrak{X}}|$.
3. $\varepsilon_{u} <_{\varepsilon_{\mathfrak{X}}} \varepsilon_{v}$ if $u, v \in X$ and $u <_{\chi} v$.
4. If $\omega^{\alpha_{1}} + \ldots + \omega^{\alpha_{n}} \in |\varepsilon_{\mathfrak{X}}|$, $u \in X$ and $\alpha_{1} <_{\varepsilon_{\mathfrak{X}}} \varepsilon_{u}$ then
 $\omega^{\alpha_{1}} + \ldots + \omega^{\alpha_{n}} \in |\varepsilon_{\mathfrak{X}}|$, $u \in X$, and $\varepsilon_{u} <_{\varepsilon_{\mathfrak{X}}} \alpha_{1}$ or $\varepsilon_{u} = \alpha_{1}$, then
 $\varepsilon_{u} <_{\varepsilon_{\mathfrak{X}}} \omega^{\alpha_{1}} + \ldots + \omega^{\alpha_{n}} \in |\varepsilon_{\mathfrak{X}}|$, $u \in X$, and $\varepsilon_{u} <_{\varepsilon_{\mathfrak{X}}} \alpha_{1}$ or $\varepsilon_{u} = \alpha_{1}$, then
 $\omega^{\alpha_{1}} + \ldots + \omega^{\alpha_{n}} = |\varepsilon_{\mathfrak{X}}|$, then
 $\omega^{\alpha_{1}} + \ldots + \omega^{\alpha_{n}} <_{\varepsilon_{\mathfrak{X}}} \omega^{\beta_{1}} + \ldots + \omega^{\beta_{m}} = |\varepsilon_{\mathfrak{X}}|$, then
 $\omega^{\alpha_{1}} + \ldots + \omega^{\alpha_{n}} <_{\varepsilon_{\mathfrak{X}}} \omega^{\beta_{1}} + \ldots + \omega^{\beta_{m}} = |\varepsilon_{\mathfrak{X}}|$, then
 $\omega^{\alpha_{1}} + \ldots + \omega^{\alpha_{n}} <_{\varepsilon_{\mathfrak{X}}} \omega^{\beta_{1}} + \ldots + \omega^{\beta_{m}} = |\varepsilon_{\mathfrak{X}}|$, then
 $\omega^{\alpha_{1}} + \ldots + \omega^{\alpha_{n}} <_{\varepsilon_{\mathfrak{X}}} \omega^{\beta_{1}} + \ldots + \omega^{\beta_{m}} = |\varepsilon_{\mathfrak{X}}|$, then
 $\omega^{\alpha_{1}} + \ldots + \omega^{\alpha_{n}} <_{\varepsilon_{\mathfrak{X}}} \omega^{\beta_{1}} + \ldots + \omega^{\beta_{m}} = |\varepsilon_{\mathfrak{X}}|$.
Let $\varepsilon_{\mathfrak{X}} = \langle |\varepsilon_{\mathfrak{X}}|, <_{\varepsilon_{\mathfrak{X}}} \rangle$.

Ordinal representation systems 1904-1909

Ordinal representation systems 1904-1909

Hardy (1904) wanted to "construct" a subset of \mathbb{R} of size \aleph_1 .

Ordinal representation systems 1904-1909

Hardy (1904) wanted to "construct" a subset of \mathbb{R} of size \aleph_1 . Hardy gives explicit representations for all ordinals $< \omega^2$.

Veblen extended the initial segment of the countable for which fundamental sequences can be given effectively.

He applied two new operations to continuous increasing functions on ordinals:

Veblen extended the initial segment of the countable for which fundamental sequences can be given effectively.

- He applied two new operations to continuous increasing functions on ordinals:
 - Derivation

Veblen extended the initial segment of the countable for which fundamental sequences can be given effectively.

- He applied two new operations to continuous increasing functions on ordinals:
 - Derivation
 - Transfinite Iteration

Veblen extended the initial segment of the countable for which fundamental sequences can be given effectively.

- He applied two new operations to continuous increasing functions on ordinals:
 - Derivation
 - Transfinite Iteration
- Let ON be the class of ordinals. A (class) function f : ON → ON is said to be increasing if α < β implies f(α) < f(β) and continuous (in the order topology on ON) if</p>

$$f(\lim_{\xi<\lambda}\alpha_{\xi}) = \lim_{\xi<\lambda}f(\alpha_{\xi})$$

holds for every limit ordinal λ and increasing sequence $(\alpha_{\xi})_{\xi < \lambda}$.

• *f* is called **normal** if it is increasing and continuous.

- *f* is called **normal** if it is increasing and continuous.
- The function β → ω + β is normal while β → β + ω is not continuous at ω since lim_{ξ<ω}(ξ + ω) = ω but (lim_{ξ<ω}ξ) + ω = ω + ω.

- *f* is called **normal** if it is increasing and continuous.
- The function β → ω + β is normal while β → β + ω is not continuous at ω since lim_{ξ<ω}(ξ + ω) = ω but (lim_{ξ<ω}ξ) + ω = ω + ω.
- ► The derivative f' of a function f : ON → ON is the function which enumerates in increasing order the solutions of the equation

$$f(\alpha) = \alpha,$$

also called the **fixed points** of f.

- *f* is called **normal** if it is increasing and continuous.
- The function β → ω + β is normal while β → β + ω is not continuous at ω since lim_{ξ<ω}(ξ + ω) = ω but (lim_{ξ<ω}ξ) + ω = ω + ω.
- ► The derivative f' of a function f : ON → ON is the function which enumerates in increasing order the solutions of the equation

$$f(\alpha) = \alpha$$

also called the fixed points of f.

▶ If *f* is a normal function,

$$\{\alpha: f(\alpha) = \alpha\}$$

is a proper class and f' will be a normal function, too.

► Given a normal function f : ON → ON, define a hierarchy of normal functions as follows:

► Given a normal function f : ON → ON, define a hierarchy of normal functions as follows:

 $\blacktriangleright f_0 = f$

- ► Given a normal function f : ON → ON, define a hierarchy of normal functions as follows:
- $\blacktriangleright f_0 = f$
- $\blacktriangleright f_{\alpha+1} = f_{\alpha}'$

- ► Given a normal function f : ON → ON, define a hierarchy of normal functions as follows:
- $\blacktriangleright f_0 = f$

• $f_{\alpha+1} = f_{\alpha}'$

 $f_{\lambda}(\xi) = \xi^{th}$ element of $\bigcap_{\alpha < \lambda} \{ \text{Fixed points of } f_{\alpha} \}$ for λ limit.

The Feferman-Schütte Ordinal Γ_0

Starting with the normal function f(ξ) = ω^ξ, the function f_α is usually denoted by

 $\varphi_{\alpha}.$
The Feferman-Schütte Ordinal Γ_0

Starting with the normal function f(ξ) = ω^ξ, the function f_α is usually denoted by

 $\varphi_{\alpha}.$

The least ordinal γ > 0 closed under α, β → φ_α(β), i.e. the least ordinal > 0 satisfying

 $(\forall \alpha, \beta < \gamma) \varphi_{\alpha}(\beta) < \gamma$

The Feferman-Schütte Ordinal Γ_0

Starting with the normal function f(ξ) = ω^ξ, the function f_α is usually denoted by

 $\varphi_{\alpha}.$

The least ordinal γ > 0 closed under α, β → φ_α(β), i.e. the least ordinal > 0 satisfying

 $(\forall \alpha, \beta < \gamma) \varphi_{\alpha}(\beta) < \gamma$

is the famous ordinal Γ_0 which Feferman and Schütte determined to be the least ordinal 'unreachable' by certain autonomous progressions of theories.

Theorem. φ -comparison

Theorem. φ -comparison

(i) $\varphi_{\alpha_1}(\beta_1) = \varphi_{\alpha_2}(\beta_2)$ holds iff one of the following conditions is satisfied:

1.
$$\alpha_1 < \alpha_2$$
 and $\beta_1 = \varphi_{\alpha_2}(\beta_2)$

2.
$$\alpha_1 = \alpha_2$$
 and $\beta_1 = \beta_2$

3.
$$\alpha_2 < \alpha_1$$
 and $\varphi_{\alpha_1}(\beta_1) = \beta_2$.

Theorem. φ -comparison

(i) $\varphi_{\alpha_1}(\beta_1) = \varphi_{\alpha_2}(\beta_2)$ holds iff one of the following conditions is satisfied:

1.
$$\alpha_1 < \alpha_2$$
 and $\beta_1 = \varphi_{\alpha_2}(\beta_2)$

2.
$$\alpha_1 = \alpha_2$$
 and $\beta_1 = \beta_2$

3. $\alpha_2 < \alpha_1$ and $\varphi_{\alpha_1}(\beta_1) = \beta_2$.

(ii) $\varphi_{\alpha_1}(\beta_1) < \varphi_{\alpha_2}(\beta_2)$ holds iff one of the following conditions is satisfied:

1. $\alpha_1 < \alpha_2$ and $\beta_1 < \varphi_{\alpha_2}(\beta_2)$ 2. $\alpha_1 = \alpha_2$ and $\beta_1 < \beta_2$ 3. $\alpha_2 < \alpha_1$ and $\varphi_{\alpha_1}(\beta_1) < \beta_2$.

ATR₀ and $\varphi \mathfrak{X} 0$

Theorem: (Friedman, unpublished) Over \mathbf{RCA}_0 the following are equivalent:

Theorem: (Friedman, unpublished) Over \mathbf{RCA}_0 the following are equivalent:

ATR₀ and $\varphi \mathfrak{X} 0$

Theorem: (Friedman, unpublished) Over \mathbf{RCA}_0 the following are equivalent:

2.
$$\forall \mathfrak{X} [WO(\mathfrak{X}) \to WO(\varphi \mathfrak{X} 0)].$$

ATR₀ and $\varphi \mathfrak{X} 0$

Theorem: (Friedman, unpublished) Over \mathbf{RCA}_0 the following are equivalent:

2.
$$\forall \mathfrak{X} [WO(\mathfrak{X}) \to WO(\varphi \mathfrak{X} 0)].$$

 $\mathbf{ATR}_{0} \text{ and } \varphi \mathfrak{X} \mathbf{0}$

Theorem: (Friedman, unpublished) Over \mathbf{RCA}_0 the following are equivalent:

$1. \ \textbf{ATR}_0$

2. $\forall \mathfrak{X} [WO(\mathfrak{X}) \rightarrow WO(\varphi \mathfrak{X} 0)].$

Friedman's proof uses computability theory and also some proof theory. Among other things it uses a result which states that if P ⊆ P(ω) × P(ω) is arithmetic, then there is no sequence {A_n | n ∈ ω} such that $\mathbf{ATR}_{\mathbf{0}} \text{ and } \varphi \mathfrak{X} \mathbf{0}$

Theorem: (Friedman, unpublished) Over \mathbf{RCA}_0 the following are equivalent:

- 2. $\forall \mathfrak{X} [WO(\mathfrak{X}) \rightarrow WO(\varphi \mathfrak{X} 0)].$
- Friedman's proof uses computability theory and also some proof theory. Among other things it uses a result which states that if P ⊆ P(ω) × P(ω) is arithmetic, then there is no sequence {A_n | n ∈ ω} such that
 - for every *n*, A_{n+1} is the unique set such that $P(A_n, A_{n+1})$,

 $\mathbf{ATR}_{\mathbf{0}} \text{ and } \varphi \mathfrak{X} \mathbf{0}$

Theorem: (Friedman, unpublished) Over \mathbf{RCA}_0 the following are equivalent:

$1. \ \textbf{ATR}_0$

2. $\forall \mathfrak{X} [WO(\mathfrak{X}) \rightarrow WO(\varphi \mathfrak{X} 0)].$

- Friedman's proof uses computability theory and also some proof theory. Among other things it uses a result which states that if P ⊆ P(ω) × P(ω) is arithmetic, then there is no sequence {A_n | n ∈ ω} such that
 - for every n, A_{n+1} is the unique set such that $P(A_n, A_{n+1})$,
 - for every n, $A'_{n+1} \leq_T A_n$.

ATR₀ and $\varphi \mathfrak{X} 0$

Theorem: Over **RCA**₀ the following are equivalent:

 $1. \ ATR_0$

ATR₀ and $\varphi \mathfrak{X} 0$

- $1. \ ATR_0$
- 2. $\forall \mathfrak{X} [WO(\mathfrak{X}) \rightarrow WO(\varphi \mathfrak{X} 0)].$

ATR₀ and $\varphi \mathfrak{X} 0$

- $1. \ ATR_0$
- 2. $\forall \mathfrak{X} [WO(\mathfrak{X}) \rightarrow WO(\varphi \mathfrak{X} 0)].$

$\mathbf{ATR}_{\mathbf{0}} \text{ and } \varphi \mathfrak{X} \mathbf{0}$

- $1. \ ATR_0$
- 2. $\forall \mathfrak{X} [WO(\mathfrak{X}) \rightarrow WO(\varphi \mathfrak{X} 0)].$
- A. Marcone, A. Montalbán: The Veblen function for computability theorists, JSL 76 (2011) 575–602.

- $1. \ \textbf{ATR}_0$
- 2. $\forall \mathfrak{X} [WO(\mathfrak{X}) \rightarrow WO(\varphi \mathfrak{X} 0)].$
- A. Marcone, A. Montalbán: The Veblen function for computability theorists, JSL 76 (2011) 575–602.
- R. and Weiermann, *Reverse mathematics and well-ordering principles*, Computability in Context: Computation and Logic in the Real World (S. B. Cooper and A. Sorbi, eds.) (Imperial College Press, 2011) 351–370.

An ω-model of a theory T in the language of second order arithmetic is one where the first order part is standard.

- An ω-model of a theory T in the language of second order arithmetic is one where the first order part is standard.
- Such a model is isomorphic to one of the form

$$\mathfrak{M} = (\mathbb{N}, \mathfrak{X}, 0, 1, +, \times, \in)$$

with $\mathfrak{X} \subseteq \mathcal{P}(\mathbb{N})$.

An ω-model of a theory T in the language of second order arithmetic is one where the first order part is standard.

Such a model is isomorphic to one of the form

$$\mathfrak{M} = (\mathbb{N}, \mathfrak{X}, \mathbf{0}, \mathbf{1}, +, \times, \in)$$

with $\mathfrak{X} \subseteq \mathcal{P}(\mathbb{N})$.

Definition. \mathfrak{M} is a countable coded ω -model of T if

$$\mathfrak{X} = \{(C)_n \mid n \in \mathbb{N}\}$$

for some $C \subseteq \mathbb{N}$ where $(C)_n = \{k \mid 2^n 3^k \in C\}$.


```
1. \forall \mathfrak{X} [WO(\mathfrak{X}) \rightarrow WO(\Gamma_{\mathfrak{X}})]
```


- 1. $\forall \mathfrak{X} [WO(\mathfrak{X}) \to WO(\Gamma_{\mathfrak{X}})]$
- 2. Every set is contained in an ω -model of **ATR**.

- 1. $\forall \mathfrak{X} [WO(\mathfrak{X}) \to WO(\Gamma_{\mathfrak{X}})]$
- 2. Every set is contained in an ω -model of **ATR**.

R., ω-models and well-ordering principles. In: N. Tennant (ed.): Foundational Adventures: Essays in Honor of Harvey M. Friedman. (2014)

\mbox{ATR}_0 can be axiomatized via a single sentence Π_2^1 sentence $\forall X \; C(X)$

where C(X) is Σ_1^1 .

Proof: This is a standard result. See Simpson's book.

Proof of (ii) \Rightarrow (i) of Theorem^{*}

(i) Let U_0, U_1, U_2, \ldots be an enumeration of the free set variables of L_2 .

Proof of (ii) \Rightarrow (i) of Theorem^{*}

- (i) Let U_0, U_1, U_2, \ldots be an enumeration of the free set variables of L_2 .
- (ii) For a closed term t, let t^N be its numerical value. We shall assume that all predicate symbols of the language L₂ are symbols for primitive recursive relations. L₂ contains predicate symbols for the primitive recursive relations of equality and inequality and possibly more (or all) primitive recursive relations. If R is a predicate symbol in L₂ we denote by R^N the primitive recursive relation it stands for. If t₁,..., t_n are closed terms the formula R(t₁,..., t_n) (¬R(t₁,..., t_n)) is said to be *true* if R^N(t₁^N,..., t_n^N) is true (is false).

Proof of (ii) \Rightarrow (i) of Theorem^{*}

- (i) Let U_0, U_1, U_2, \ldots be an enumeration of the free set variables of L_2 .
- (ii) For a closed term t, let t^N be its numerical value. We shall assume that all predicate symbols of the language L₂ are symbols for primitive recursive relations. L₂ contains predicate symbols for the primitive recursive relations of equality and inequality and possibly more (or all) primitive recursive relations. If R is a predicate symbol in L₂ we denote by R^N the primitive recursive relation it stands for. If t₁,..., t_n are closed terms the formula R(t₁,..., t_n) (¬R(t₁,..., t_n)) is said to be true if R^N(t₁^N,..., t_n^N) is true (is false).
- (iii) Henceforth a **sequent** will be a finite set of L_2 -formulas without free number variables.

Sequents will be denoted by $\Gamma,\Lambda,\ldots.$

Sequents will be denoted by $\Gamma,\Lambda,\ldots.$

(i) A sequent Γ is **axiomatic** if it satisfies at least one of the following conditions:

Sequents will be denoted by $\Gamma,\Lambda,\ldots.$

- (i) A sequent Γ is axiomatic if it satisfies at least one of the following conditions:
 - 1. Γ contains a true **literal**, i.e. a true formula of either form $R(t_1, \ldots, t_n)$ or $\neg R(t_1, \ldots, t_n)$, where R is a predicate symbol in L_2 for a primitive recursive relation and t_1, \ldots, t_n are closed terms.
Sequents will be denoted by $\Gamma,\Lambda,\ldots.$

- (i) A sequent Γ is axiomatic if it satisfies at least one of the following conditions:
 - 1. Γ contains a true **literal**, i.e. a true formula of either form $R(t_1, \ldots, t_n)$ or $\neg R(t_1, \ldots, t_n)$, where R is a predicate symbol in L_2 for a primitive recursive relation and t_1, \ldots, t_n are closed terms.
 - 2. Γ contains formulas $s \in U$ and $t \notin U$ for some set variable U and terms s, t with s = t.

Sequents will be denoted by $\Gamma,\Lambda,\ldots.$

- (i) A sequent Γ is axiomatic if it satisfies at least one of the following conditions:
 - 1. Γ contains a true **literal**, i.e. a true formula of either form $R(t_1, \ldots, t_n)$ or $\neg R(t_1, \ldots, t_n)$, where R is a predicate symbol in L_2 for a primitive recursive relation and t_1, \ldots, t_n are closed terms.
 - 2. Γ contains formulas $s \in U$ and $t \notin U$ for some set variable U and terms s, t with s = t.
- (iv) A sequent is **reducible** or a **redex** if it is not axiomatic and contains a formula which is not a literal.

A deduction chain is a finite string

 $\Gamma_0, \Gamma_1, \ldots, \Gamma_k$

of sequents Γ_i constructed according to the following rules:

A deduction chain is a finite string

 $\Gamma_0, \Gamma_1, \ldots, \Gamma_k$

of sequents Γ_i constructed according to the following rules: (i) $\Gamma_0 = \emptyset$.

A deduction chain is a finite string

 $\Gamma_0, \Gamma_1, \ldots, \Gamma_k$

of sequents Γ_i constructed according to the following rules:
(i) Γ₀ = Ø.
(ii) Γ_i is not axiomatic for i < k.

A deduction chain is a finite string

 $\Gamma_0, \Gamma_1, \ldots, \Gamma_k$

of sequents Γ_i constructed according to the following rules:

- (i) $\Gamma_0 = \emptyset$.
- (ii) Γ_i is not axiomatic for i < k.
- (iii) If i < k and Γ_i is not reducible then

$$\Gamma_{i+1} = \Gamma_i, \neg C(U_i).$$

A deduction chain is a finite string

 $\Gamma_0, \Gamma_1, \ldots, \Gamma_k$

of sequents Γ_i constructed according to the following rules:

(i)
$$\Gamma_0 = \emptyset$$
.

(ii) Γ_i is not axiomatic for i < k.

(iii) If i < k and Γ_i is not reducible then

 $\Gamma_{i+1} = \Gamma_i, \neg C(U_i).$

(iv) Every reducible Γ_i with i < k is of the form

 Γ'_i, E, Γ''_i

where *E* is not a literal and Γ'_i contains only literals. *E* is said to be the **redex** of Γ_i .

1. If $E \equiv E_0 \lor E_1$ then

$$\Gamma_{i+1} = \Gamma'_i, E_0, E_1, \Gamma''_i, \neg C(U_i).$$

1. If $E \equiv E_0 \lor E_1$ then

$$\Gamma_{i+1} = \Gamma'_i, E_0, E_1, \Gamma''_i, \neg C(U_i).$$

2. If $E \equiv E_0 \wedge E_1$ then

$$\Gamma_{i+1} = \Gamma'_i, E_j, \Gamma''_i, \neg C(U_i)$$

where j = 0 or j = 1.

1. If $E \equiv E_0 \lor E_1$ then

$$\Gamma_{i+1} = \Gamma'_i, E_0, E_1, \Gamma''_i, \neg C(U_i).$$

2. If $E \equiv E_0 \wedge E_1$ then

$$\Gamma_{i+1} = \Gamma'_i, E_j, \Gamma''_i, \neg C(U_i)$$

where j = 0 or j = 1.

3. If
$$E \equiv \exists x F(x)$$
 then

$$\Gamma_{i+1} = \Gamma'_i, F(\bar{m}), \Gamma''_i, \neg C(U_i), E$$

where *m* is the first number such that $F(\bar{m})$ does not occur in $\Gamma_0, \ldots, \Gamma_i$.

(4) If
$$E \equiv \forall x F(x)$$
 then

$$\Gamma_{i+1} = \Gamma'_i, F(\bar{m}), \Gamma''_i, \neg C(U_i)$$

for some *m*.

(4) If
$$E \equiv \forall x F(x)$$
 then

$$\Gamma_{i+1} = \Gamma'_i, F(\bar{m}), \Gamma''_i, \neg C(U_i)$$

for some *m*.

(5) If $E \equiv \exists X F(X)$ then

$$\Gamma_{i+1} = \Gamma'_i, F(U_m), \Gamma''_i, \neg C(U_i), E$$

where *m* is the first number such that $F(U_m)$ does not occur in $\Gamma_0, \ldots, \Gamma_i$.

(4) If
$$E \equiv \forall x F(x)$$
 then

$$\Gamma_{i+1} = \Gamma'_i, F(\bar{m}), \Gamma''_i, \neg C(U_i)$$

for some *m*.

(5) If $E \equiv \exists X F(X)$ then

$$\Gamma_{i+1} = \Gamma'_i, F(U_m), \Gamma''_i, \neg C(U_i), E$$

where *m* is the first number such that $F(U_m)$ does not occur in $\Gamma_0, \ldots, \Gamma_i$. (6) If $E \equiv \forall X F(X)$ then

$$\Gamma_{i+1} = \Gamma'_i, F(U_m), \Gamma''_i, \neg C(U_i)$$

where *m* is the first number such that $m \neq i + 1$ and U_m does not occur in Γ_i .

► The set of deduction chains forms a tree T labeled with strings of sequents. We will now consider two cases.

- ► The set of deduction chains forms a tree T labeled with strings of sequents. We will now consider two cases.
- **Case I:** T is not well-founded.

- ► The set of deduction chains forms a tree T labeled with strings of sequents. We will now consider two cases.
- **Case I:** T is not well-founded.

Then ${\mathbb T}$ contains an infinite path ${\mathbb P}.$

- The set of deduction chains forms a tree T labeled with strings of sequents. We will now consider two cases.
- **Case I: T** is not well-founded.

$$(\mathcal{M})_i \hspace{.1in} = \hspace{.1in} \{t^{^{\mathbb{N}}} \mid t \notin U_i ext{ occurs in } \mathbb{P} \}.$$

Set $\mathbb{M} = (\mathbb{N}; \{(M)_i \mid i \in \mathbb{N}\}, +, \cdot, 0, 1, <).$

- The set of deduction chains forms a tree T labeled with strings of sequents. We will now consider two cases.
- **Case I: T** is not well-founded.

$$(\mathcal{M})_i \hspace{.1in} = \hspace{.1in} \{t^{^{\mathbb{N}}} \mid t \notin U_i ext{ occurs in } \mathbb{P} \}.$$

Set $\mathbb{M} = (\mathbb{N}; \{(M)_i \mid i \in \mathbb{N}\}, +, \cdot, 0, 1, <).$

For a formula F, let F ∈ ℙ mean that F occurs in ℙ, i.e. F ∈ Γ for some Γ ∈ ℙ.

- The set of deduction chains forms a tree T labeled with strings of sequents. We will now consider two cases.
- **Case I:** T is not well-founded.

$$(\mathcal{M})_i \hspace{.1in} = \hspace{.1in} \{t^{^{\mathbb{N}}} \mid t \notin U_i ext{ occurs in } \mathbb{P}\}.$$

Set $\mathbb{M} = (\mathbb{N}; \{(M)_i \mid i \in \mathbb{N}\}, +, \cdot, 0, 1, <).$

- For a formula F, let F ∈ ℙ mean that F occurs in ℙ, i.e. F ∈ Γ for some Γ ∈ ℙ.
- **Claim:** Under the assignment $U_i \mapsto (M)_i$ we have

$$F \in \mathbb{P} \quad \Rightarrow \quad \mathbb{M} \models \neg F.$$

- The set of deduction chains forms a tree T labeled with strings of sequents. We will now consider two cases.
- **Case I:** T is not well-founded.

$$(M)_i \hspace{.1in} = \hspace{.1in} \{t^{^{\mathbb N}} \mid t \notin U_i ext{ occurs in } \mathbb P\}.$$

Set $\mathbb{M} = (\mathbb{N}; \{(M)_i \mid i \in \mathbb{N}\}, +, \cdot, 0, 1, <).$

- For a formula F, let F ∈ ℙ mean that F occurs in ℙ, i.e. F ∈ Γ for some Γ ∈ ℙ.
- **Claim:** Under the assignment $U_i \mapsto (M)_i$ we have

$$F \in \mathbb{P} \quad \Rightarrow \quad \mathbb{M} \models \neg F.$$

• The Claim implies that \mathbb{M} is an ω -model of **ATR**.

We want to rule this out.

We want to rule this out.

This is the place where the principle

 $\forall \mathfrak{X} \left[\mathsf{WO}(\mathfrak{X}) \to \mathsf{WO}(\Gamma_{\mathfrak{X}}) \right]$

in the guise of cut elimination for an infinitary proof system enters the stage.

We want to rule this out.

This is the place where the principle

```
\forall \mathfrak{X} \left[ \mathsf{WO}(\mathfrak{X}) \to \mathsf{WO}(\Gamma_{\mathfrak{X}}) \right]
```

in the guise of cut elimination for an infinitary proof system enters the stage.

Aiming at a contradiction, suppose that \mathcal{D}_Q is a well-founded tree. Let \mathfrak{X}_0 be the Kleene-Brouwer ordering on \mathcal{D}_Q . Then \mathfrak{X}_0 is a well-ordering. In a nutshell, the idea is that a well-founded \mathcal{D}_Q gives rise to a derivation of the empty sequent (contradiction) in the infinitary proof systems \mathcal{T}_Q^∞ from R.: The strength of Martin-Löf type theory with a superuniverse. Part II. Archive for Mathematical Logic 40 (2001) 207-233.

The Big Veblen Number

The Big Veblen Number

Veblen extended this idea first to arbitrary finite numbers of arguments, but then also to transfinite numbers of arguments, with the proviso that in, for example

$$\Phi_f(\alpha_0, \alpha_1, \ldots, \alpha_\eta),$$

only a finite number of the arguments

 α_{ν}

may be non-zero.

Veblen singled out the ordinal *E*(0), where *E*(0) is the least ordinal δ > 0 which cannot be named in terms of functions

$$\Phi_{\ell}(\alpha_0, \alpha_1, \ldots, \alpha_\eta)$$

with $\eta < \delta$, and each $\alpha_{\gamma} < \delta$.

The Big Leap: H. Bachmann 1950

The Big Leap: H. Bachmann 1950

- Bachmann's novel idea: Use uncountable ordinals to keep track of the functions defined by diagonalization.
- Define a set of ordinals 𝔅 closed under successor such that with each limit λ ∈ 𝔅 is associated an increasing sequence ⟨λ[ξ] : ξ < τ_λ⟩ of ordinals λ[ξ] ∈ 𝔅 of length τ_λ ≤ 𝔅 and lim_{ξ<τ_λ} λ[ξ] = λ.

The Big Leap: H. Bachmann 1950

- Bachmann's novel idea: Use uncountable ordinals to keep track of the functions defined by diagonalization.
- Define a set of ordinals 𝔅 closed under successor such that with each limit λ ∈ 𝔅 is associated an increasing sequence ⟨λ[ξ] : ξ < τ_λ⟩ of ordinals λ[ξ] ∈ 𝔅 of length τ_λ ≤ 𝔅 and lim_{ξ<τ_λ} λ[ξ] = λ.
- ► Let Ω be the first uncountable ordinal. A hierarchy of functions $(\varphi_{\alpha}^{\mathfrak{B}})_{\alpha \in \mathfrak{B}}$ is then obtained as follows:

$$\begin{split} \varphi_{0}^{\mathfrak{B}}(\beta) &= 1 + \beta \qquad \varphi_{\alpha+1}^{\mathfrak{B}} = \left(\varphi_{\alpha}^{\mathfrak{B}}\right)' \\ \varphi_{\lambda}^{\mathfrak{B}} \quad \text{enumerates} \quad \bigcap_{\xi < \tau_{\lambda}} (\text{Range of } \varphi_{\lambda[\xi]}^{\mathfrak{B}}) \quad \lambda \text{ limit, } \tau_{\lambda} < \Omega \\ \varphi_{\lambda}^{\mathfrak{B}} \quad \text{enumerates} \quad \{\beta < \Omega : \varphi_{\lambda[\beta]}^{\mathfrak{B}}(0) = \beta\} \quad \lambda \text{ limit, } \tau_{\lambda} = \Omega. \end{split}$$

Let Ω be a "big" ordinal, and definitely an ε -number.

Let Ω be a "big" ordinal, and definitely an $\varepsilon\text{-number}.$

Using ordinals $< \Omega$ and Ω itself as building blocks, construct further ordinals using Cantor's normal form, i.e., if $\alpha_1 \ge \ldots \ge \alpha_n$ have already been constructed, then we build

$$\alpha := \omega^{\alpha_1} + \dots + \omega^{\alpha_n}$$

provided that $\alpha > \alpha_1$.

Let Ω be a "big" ordinal, and definitely an $\varepsilon\text{-number}.$

Using ordinals $< \Omega$ and Ω itself as building blocks, construct further ordinals using Cantor's normal form, i.e., if $\alpha_1 \ge \ldots \ge \alpha_n$ have already been constructed, then we build

$$\alpha := \omega^{\alpha_1} + \dots + \omega^{\alpha_n}$$

provided that $\alpha > \alpha_1$.

In this way we can build all ordinals $< \varepsilon_{\Omega+1}$, where the latter ordinal denotes the first ε -number after Ω .

Let Ω be a "big" ordinal, and definitely an $\varepsilon\text{-number}.$

Using ordinals $< \Omega$ and Ω itself as building blocks, construct further ordinals using Cantor's normal form, i.e., if $\alpha_1 \ge \ldots \ge \alpha_n$ have already been constructed, then we build

$$\alpha := \omega^{\alpha_1} + \dots + \omega^{\alpha_n}$$

provided that $\alpha > \alpha_1$.

In this way we can build all ordinals $< \varepsilon_{\Omega+1}$, where the latter ordinal denotes the first ε -number after Ω .

Conversely, we can take any $\alpha < \varepsilon_{\Omega+1}$ apart, yielding smaller pieces as long as the exponents in its Cantor normal are smaller ordinals.

Let Ω be a "big" ordinal, and definitely an $\varepsilon\text{-number}.$

Using ordinals $< \Omega$ and Ω itself as building blocks, construct further ordinals using Cantor's normal form, i.e., if $\alpha_1 \ge \ldots \ge \alpha_n$ have already been constructed, then we build

$$\alpha := \omega^{\alpha_1} + \dots + \omega^{\alpha_n}$$

provided that $\alpha > \alpha_1$.

In this way we can build all ordinals $< \varepsilon_{\Omega+1}$, where the latter ordinal denotes the first ε -number after Ω .

Conversely, we can take any $\alpha < \varepsilon_{\Omega+1}$ apart, yielding smaller pieces as long as the exponents in its Cantor normal are smaller ordinals. More precisely define:

(i) $\operatorname{supp}_{\Omega}(0) = \emptyset$, $\operatorname{supp}_{\Omega}(\Omega) = \emptyset$.
Using Bachmann's idea

Let Ω be a "big" ordinal, and definitely an $\varepsilon\text{-number}.$

Using ordinals $< \Omega$ and Ω itself as building blocks, construct further ordinals using Cantor's normal form, i.e., if $\alpha_1 \ge \ldots \ge \alpha_n$ have already been constructed, then we build

$$\alpha := \omega^{\alpha_1} + \dots + \omega^{\alpha_n}$$

provided that $\alpha > \alpha_1$.

In this way we can build all ordinals $< \varepsilon_{\Omega+1}$, where the latter ordinal denotes the first ε -number after Ω .

Conversely, we can take any $\alpha < \varepsilon_{\Omega+1}$ apart, yielding smaller pieces as long as the exponents in its Cantor normal are smaller ordinals. More precisely define:

(i)
$$\operatorname{supp}_{\Omega}(0) = \emptyset$$
, $\operatorname{supp}_{\Omega}(\Omega) = \emptyset$.
(ii) $\operatorname{supp}_{\Omega}(\alpha) = \operatorname{supp}_{\Omega}(\alpha_1) \cup \cdots \cup \operatorname{supp}_{\Omega}(\alpha_n)$ if $\alpha =_{CNF} \omega^{\alpha_1} + \cdots + \omega^{\alpha_n} > \alpha_1$.

Using Bachmann's idea

Let Ω be a "big" ordinal, and definitely an $\varepsilon\text{-number}.$

Using ordinals $< \Omega$ and Ω itself as building blocks, construct further ordinals using Cantor's normal form, i.e., if $\alpha_1 \ge \ldots \ge \alpha_n$ have already been constructed, then we build

$$\alpha := \omega^{\alpha_1} + \dots + \omega^{\alpha_n}$$

provided that $\alpha > \alpha_1$.

In this way we can build all ordinals $< \varepsilon_{\Omega+1}$, where the latter ordinal denotes the first ε -number after Ω .

Conversely, we can take any $\alpha < \varepsilon_{\Omega+1}$ apart, yielding smaller pieces as long as the exponents in its Cantor normal are smaller ordinals. More precisely define:

(i)
$$\operatorname{supp}_{\Omega}(0) = \emptyset$$
, $\operatorname{supp}_{\Omega}(\Omega) = \emptyset$.
(ii) $\operatorname{supp}_{\Omega}(\alpha) = \operatorname{supp}_{\Omega}(\alpha_{1}) \cup \cdots \cup \operatorname{supp}_{\Omega}(\alpha_{n})$ if $\alpha =_{CNF} \omega^{\alpha_{1}} + \cdots + \omega^{\alpha_{n}} > \alpha_{1}$.

(iii) $\operatorname{supp}_{\Omega}(\alpha) = \{\alpha\}$ if α is an ε -number $< \Omega$.

Using Bachmann's idea

Let Ω be a "big" ordinal, and definitely an $\varepsilon\text{-number}.$

Using ordinals $< \Omega$ and Ω itself as building blocks, construct further ordinals using Cantor's normal form, i.e., if $\alpha_1 \ge \ldots \ge \alpha_n$ have already been constructed, then we build

$$\alpha := \omega^{\alpha_1} + \dots + \omega^{\alpha_n}$$

provided that $\alpha > \alpha_1$.

In this way we can build all ordinals $< \varepsilon_{\Omega+1}$, where the latter ordinal denotes the first ε -number after Ω .

Conversely, we can take any $\alpha < \varepsilon_{\Omega+1}$ apart, yielding smaller pieces as long as the exponents in its Cantor normal are smaller ordinals. More precisely define:

(i)
$$\operatorname{supp}_{\Omega}(0) = \emptyset$$
, $\operatorname{supp}_{\Omega}(\Omega) = \emptyset$.
(ii) $\operatorname{supp}_{\Omega}(\alpha) = \operatorname{supp}_{\Omega}(\alpha_{1}) \cup \cdots \cup \operatorname{supp}_{\Omega}(\alpha_{n})$ if $\alpha =_{CNF} \omega^{\alpha_{1}} + \cdots + \omega^{\alpha_{n}} > \alpha_{1}$.
(iii) $\operatorname{supp}_{\Omega}(\alpha) = \{\alpha\}$ if α is an ε -number $< \Omega$.
 $\operatorname{supp}_{\Omega}(\alpha)$ is a finite set.

 $\vartheta \colon \varepsilon_{\Omega+1} \to \Omega$

such that each $\vartheta(\alpha)$ is an ε -number.

$\vartheta \colon \varepsilon_{\Omega+1} \to \Omega$

such that each $\vartheta(\alpha)$ is an ε -number.

Think of ϑ as a collapsing, or better projection function in the sense of admissible set theory.

 $\vartheta \colon \varepsilon_{\Omega+1} \to \Omega$

such that each $\vartheta(\alpha)$ is an ε -number.

Think of ϑ as a collapsing, or better projection function in the sense of admissible set theory.

For obvious reasons ϑ cannot be order preserving, but the following can be realized:

 $\vartheta \colon \varepsilon_{\Omega+1} \to \Omega$

such that each $\vartheta(\alpha)$ is an ε -number.

Think of ϑ as a collapsing, or better projection function in the sense of admissible set theory.

For obvious reasons ϑ cannot be order preserving, but the following can be realized:

 $\alpha < \beta \ \land \ \mathsf{supp}_\Omega(\alpha) < \vartheta(\beta) \ \ \leftrightarrow \ \ \vartheta(\alpha) < \vartheta(\beta).$

(i) $0 \in OT(\vartheta)$ and $\Omega \in OT(\vartheta)$.

(i)
$$0 \in OT(\vartheta)$$
 and $\Omega \in OT(\vartheta)$.
(ii) If $\alpha_1, \ldots, \alpha_n \in OT(\vartheta)$, $\alpha_1 \ge \cdots \ge \alpha_n$, then $\omega^{\alpha_1} + \cdots + \omega^{\alpha_n} \in OT(\vartheta)$.

(i)
$$0 \in OT(\vartheta)$$
 and $\Omega \in OT(\vartheta)$.
(ii) If $\alpha_1, \dots, \alpha_n \in OT(\vartheta)$, $\alpha_1 \ge \dots \ge \alpha_n$, then $\omega^{\alpha_1} + \dots + \omega^{\alpha_n} \in OT(\vartheta)$.

(iii) If $\alpha \in OT(\vartheta)$ then so is $\vartheta(\alpha)$.

(i)
$$0 \in OT(\vartheta)$$
 and $\Omega \in OT(\vartheta)$.
(ii) If $\alpha_1, \dots, \alpha_n \in OT(\vartheta)$, $\alpha_1 \ge \dots \ge \alpha_n$, then $\omega^{\alpha_1} + \dots + \omega^{\alpha_n} \in OT(\vartheta)$.

(iii) If $\alpha \in OT(\vartheta)$ then so is $\vartheta(\alpha)$.

 $(OT(\vartheta), <)$ gives rise to an elementary ordinal representation system. Here < denotes the restriction to $OT(\vartheta)$.

(i)
$$0 \in OT(\vartheta)$$
 and $\Omega \in OT(\vartheta)$.
(ii) If $\alpha_1, \dots, \alpha_n \in OT(\vartheta)$, $\alpha_1 \ge \dots \ge \alpha_n$, then $\omega^{\alpha_1} + \dots + \omega^{\alpha_n} \in OT(\vartheta)$.

(iii) If $\alpha \in OT(\vartheta)$ then so is $\vartheta(\alpha)$.

 $(OT(\vartheta), <)$ gives rise to an elementary ordinal representation system. Here < denotes the restriction to $OT(\vartheta)$.

The Bachmann-Howard ordinal is the order-type of $OT(\vartheta) \cap \Omega$.

R. and P.F. Valencia Vizcaíno, *Well ordering principles and bar induction*, 2015.

R. and P.F. Valencia Vizcaíno, *Well ordering principles and bar induction*, 2015.

Again, let Ω be a "big" ordinal. Let \mathfrak{X} be a well-ordering. With each $x \in X$ associate a ε -number $\mathfrak{E}_x > \Omega$.

R. and P.F. Valencia Vizcaíno, *Well ordering principles and bar induction*, 2015.

Again, let Ω be a "big" ordinal. Let \mathfrak{X} be a well-ordering. With each $x \in X$ associate a ε -number $\mathfrak{E}_x > \Omega$.

(i) $0 \in OT_x(\vartheta)$, $\Omega \in OT_x(\vartheta)$, and $\mathfrak{E}_x \in OT_x(\vartheta)$ when $x \in X$.

R. and P.F. Valencia Vizcaíno, *Well ordering principles and bar induction*, 2015.

Again, let Ω be a "big" ordinal. Let \mathfrak{X} be a well-ordering. With each $x \in X$ associate a ε -number $\mathfrak{E}_x > \Omega$.

(i) $0 \in OT_x(\vartheta)$, $\Omega \in OT_x(\vartheta)$, and $\mathfrak{E}_x \in OT_x(\vartheta)$ when $x \in X$.

(ii) If
$$\alpha_1, \ldots, \alpha_n \in OT_x(\vartheta)$$
, $\alpha_1 \ge \cdots \ge \alpha_n$, then $\omega^{\alpha_1} + \cdots + \omega^{\alpha_n} \in OT_x(\vartheta)$.

R. and P.F. Valencia Vizcaíno, *Well ordering principles and bar induction*, 2015.

Again, let Ω be a "big" ordinal. Let \mathfrak{X} be a well-ordering. With each $x \in X$ associate a ε -number $\mathfrak{E}_x > \Omega$.

(i) $0 \in OT_x(\vartheta)$, $\Omega \in OT_x(\vartheta)$, and $\mathfrak{E}_x \in OT_x(\vartheta)$ when $x \in X$.

(ii) If
$$\alpha_1, \ldots, \alpha_n \in OT_x(\vartheta)$$
, $\alpha_1 \ge \cdots \ge \alpha_n$, then $\omega^{\alpha_1} + \cdots + \omega^{\alpha_n} \in OT_x(\vartheta)$.

(iii) If $\alpha \in OT_{\mathfrak{X}}(\vartheta)$ then so is $\vartheta_{\mathfrak{X}}(\alpha)$.

R. and P.F. Valencia Vizcaíno, *Well ordering principles and bar induction*, 2015.

Again, let Ω be a "big" ordinal. Let \mathfrak{X} be a well-ordering. With each $x \in X$ associate a ε -number $\mathfrak{E}_x > \Omega$.

(i) $0 \in OT_x(\vartheta)$, $\Omega \in OT_x(\vartheta)$, and $\mathfrak{E}_x \in OT_x(\vartheta)$ when $x \in X$.

(ii) If
$$\alpha_1, \ldots, \alpha_n \in OT_x(\vartheta)$$
, $\alpha_1 \ge \cdots \ge \alpha_n$, then $\omega^{\alpha_1} + \cdots + \omega^{\alpha_n} \in OT_x(\vartheta)$.

(iii) If $\alpha \in OT_{\mathfrak{X}}(\vartheta)$ then so is $\vartheta_{\mathfrak{X}}(\alpha)$.

To explain the ordering on $OT_{\mathfrak{X}}(\vartheta)$ one needs to extend $supp_{\Omega}$: Let $supp_{\Omega}^{\mathfrak{X}}(\mathfrak{E}_{\mathfrak{X}}) = \emptyset$.

R. and P.F. Valencia Vizcaíno, *Well ordering principles and bar induction*, 2015.

Again, let Ω be a "big" ordinal. Let \mathfrak{X} be a well-ordering. With each $x \in X$ associate a ε -number $\mathfrak{E}_x > \Omega$.

(i) $0 \in OT_x(\vartheta)$, $\Omega \in OT_x(\vartheta)$, and $\mathfrak{E}_x \in OT_x(\vartheta)$ when $x \in X$.

(ii) If
$$\alpha_1, \ldots, \alpha_n \in OT_x(\vartheta)$$
, $\alpha_1 \ge \cdots \ge \alpha_n$, then $\omega^{\alpha_1} + \cdots + \omega^{\alpha_n} \in OT_x(\vartheta)$.

(iii) If $\alpha \in OT_{\mathfrak{X}}(\vartheta)$ then so is $\vartheta_{\mathfrak{X}}(\alpha)$.

To explain the ordering on $OT_{\mathfrak{X}}(\vartheta)$ one needs to extend $supp_{\Omega}$: Let $supp_{\Omega}^{\mathfrak{X}}(\mathfrak{E}_{\mathfrak{X}}) = \emptyset$. One then sets

 $\blacktriangleright \ \mathfrak{E}_x < \mathfrak{E}_y \ \leftrightarrow \ x <_{\mathfrak{X}} y.$

R. and P.F. Valencia Vizcaíno, *Well ordering principles and bar induction*, 2015.

Again, let Ω be a "big" ordinal. Let \mathfrak{X} be a well-ordering. With each $x \in X$ associate a ε -number $\mathfrak{E}_x > \Omega$.

(i) $0 \in OT_x(\vartheta)$, $\Omega \in OT_x(\vartheta)$, and $\mathfrak{E}_x \in OT_x(\vartheta)$ when $x \in X$.

(ii) If
$$\alpha_1, \ldots, \alpha_n \in OT_x(\vartheta)$$
, $\alpha_1 \ge \cdots \ge \alpha_n$, then $\omega^{\alpha_1} + \cdots + \omega^{\alpha_n} \in OT_x(\vartheta)$.

(iii) If $\alpha \in OT_{\mathfrak{X}}(\vartheta)$ then so is $\vartheta_{\mathfrak{X}}(\alpha)$.

To explain the ordering on $OT_{\mathfrak{X}}(\vartheta)$ one needs to extend $supp_{\Omega}$: Let $supp_{\Omega}^{\mathfrak{X}}(\mathfrak{E}_{\mathfrak{X}}) = \emptyset$. One then sets

• $\mathfrak{E}_x < \mathfrak{E}_y \leftrightarrow x <_{\mathfrak{X}} y.$

 $\vartheta_{_{\mathfrak{X}}}(\alpha) < \vartheta_{_{\mathfrak{X}}}(\beta) \, \leftrightarrow \, \alpha < \beta \, \wedge \, \mathrm{supp}_{\Omega}^{_{\mathfrak{X}}}(\alpha) < \vartheta_{_{\mathfrak{X}}}(\beta).$

R. and P.F. Valencia Vizcaíno, *Well ordering principles and bar induction*, 2015.

Again, let Ω be a "big" ordinal. Let \mathfrak{X} be a well-ordering. With each $x \in X$ associate a ε -number $\mathfrak{E}_x > \Omega$.

(i) $0 \in OT_{x}(\vartheta)$, $\Omega \in OT_{x}(\vartheta)$, and $\mathfrak{E}_{x} \in OT_{x}(\vartheta)$ when $x \in X$.

(ii) If
$$\alpha_1, \ldots, \alpha_n \in OT_x(\vartheta)$$
, $\alpha_1 \ge \cdots \ge \alpha_n$, then $\omega^{\alpha_1} + \cdots + \omega^{\alpha_n} \in OT_x(\vartheta)$.

(iii) If $\alpha \in OT_{\mathfrak{X}}(\vartheta)$ then so is $\vartheta_{\mathfrak{X}}(\alpha)$.

To explain the ordering on $OT_{\mathfrak{X}}(\vartheta)$ one needs to extend $supp_{\Omega}$: Let $supp_{\Omega}^{\mathfrak{X}}(\mathfrak{E}_{\mathfrak{X}}) = \emptyset$.One then sets

 $\blacktriangleright \ \mathfrak{E}_x < \mathfrak{E}_y \ \leftrightarrow \ x <_{\mathfrak{X}} y.$

 $\vartheta_{\mathfrak{x}}(\alpha) < \vartheta_{\mathfrak{x}}(\beta) \, \leftrightarrow \, \alpha < \beta \, \wedge \, \mathsf{supp}_{\Omega}^{\mathfrak{x}}(\alpha) < \vartheta_{\mathfrak{x}}(\beta).$

 $(\mathsf{OT}_{x}(\vartheta),<)$ gives rise to an ordinal representation system elementary in $\mathfrak{X}.$

Another Theorem

R. and P.F. Valencia Vizcaíno 2015

Another Theorem

R. and P.F. Valencia Vizcaíno 2015

Over \mathbf{RCA}_0 the following are equivalent:

1. $\forall \mathfrak{X} [WO(\mathfrak{X}) \rightarrow WO(OT_{\mathfrak{X}}(\vartheta))].$

Another Theorem

R. and P.F. Valencia Vizcaíno 2015

Over \mathbf{RCA}_0 the following are equivalent:

- 1. $\forall \mathfrak{X} [WO(\mathfrak{X}) \rightarrow WO(OT_{\mathfrak{X}}(\vartheta))].$
- 2. Every set is contained in a countable coded ω -model of **BI**.

A statement of the form **WOP**(f) is Π_2^1 and therefore cannot be equivalent to a theory whose axioms have a higher complexity, like for instance Π_1^1 -comprehension.

A statement of the form **WOP**(f) is Π_2^1 and therefore cannot be equivalent to a theory whose axioms have a higher complexity, like for instance Π_1^1 -comprehension.

After ω -models come β -models and the theory Π_1^1 -**CA** has a characterization in terms of countable coded β -models, namely via the statement "every set belongs to a countably coded β -model". An ω -model \mathfrak{A} is a β -model if the concept of well ordering is absolute with respect to \mathfrak{A} .

A statement of the form **WOP**(f) is Π_2^1 and therefore cannot be equivalent to a theory whose axioms have a higher complexity, like for instance Π_1^1 -comprehension.

After ω -models come β -models and the theory Π_1^1 -**CA** has a characterization in terms of countable coded β -models, namely via the statement "every set belongs to a countably coded β -model". An ω -model \mathfrak{A} is a β -model if the concept of well ordering is absolute with respect to \mathfrak{A} .

The question arises whether the methodology can be extended to more complex axiom systems, in particular to those characterizable via β -models?

First of all, to get equivalences one has to climb up in the type structure. Given a functor

$$F: (\mathbb{LO} \to \mathbb{LO}) \to (\mathbb{LO} \to \mathbb{LO}),$$

where $\mathbb{L}\mathbb{O}$ is the class of linear orderings, we consider the statement:

 $\mathsf{WOPP}(F)$: $\forall f \in (\mathbb{LO} \to \mathbb{LO}) \ [\mathsf{WOP}(f) \to \mathsf{WOP}(F(f))].$

First of all, to get equivalences one has to climb up in the type structure. Given a functor

$$F: (\mathbb{LO} \to \mathbb{LO}) \to (\mathbb{LO} \to \mathbb{LO}),$$

where $\mathbb{L}\mathbb{O}$ is the class of linear orderings, we consider the statement:

WOPP(*F*):
$$\forall f \in (\mathbb{LO} \to \mathbb{LO}) [WOP(f) \to WOP(F(f))].$$

There is also a variant of WOPP(F) which should basically encapsulate the same "power". Given a functor

$$G:(\mathbb{LO} \to \mathbb{LO}) \to \mathbb{LO}$$

consider the statement:

 $\mathsf{WOPP}_1(G): \quad \forall f \in (\mathbb{LO} \to \mathbb{LO}) \ [\mathsf{WOP}(f) \to \mathsf{WOP}(G(f))].$