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Proof Theory and Set Theory.

Set Theory takes much of the Infinite for granted: Full Separation,
Powerset, ....

Proof Theory aims to analyze the Infinite from a stance of
“Potential Infinity”.

On the one hand Proof Theory is concerned with concrete objects
(e.g. theories, proofs, ordinal representation systems), but on the
other hand it also deals with ideal properties (e.g.,
well-foundedness, preservation of wf).

Sometimes the proof-theoretic ordinal of a theory T is defined as the
supremum of its provable prim. rec. or computable well-orderings,
| Tsup-

This is misleading!
Sometimes ORS's are treated as just computable well-orderings.

The study of computable well-orderings has a long tradition in logic,
also RM, but it's not of much interest to proof theory.

One needs a general theory of ordinal representations systems.
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For many mathematical theorems 7, there is a weakest natural subsystem

S(7) of Zy such that S(7) proves 7.

Moreover, it has turned out that S(7) often belongs to a small list of
specific subsystems of Z;. Reverse Mathematics has singled out five
subsystems of Zj:

» RCA( Recursive Comprehension

» WKL, Weak Konig's Lemma

» ACA, Arithmetical Comprehension

» ATR, Arithmetical Transfinite Recursion
» (M}—CA), M}-Comprehension
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Aims

To present a general proof-theoretic machinery for investigating
statements about well-orderings from a reverse mathematics point of
view.

These statements are of the form WOP(f)

“if X is well ordered then f(X) is well ordered”

where f is a standard proof theoretic function from ordinals to
ordinals.

There are by now several examples of functions f where the
statement WOP(f) has turned out to be equivalent to one of the
theories of reverse mathematics over a weak base theory (usually
RCA,).
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2* and Arithmetical Comprehension

2* = (129],<)

Theorem: (Girard 1987) Over RCA, the following are equivalent:
1. Arithmetical Comprehension

2. VX [WO(X) — WO(2¥)].

Slogan: one quantifier = one exponential

2% is effectively computable from X.

Abstract property WO of real object 2% versus existence of abstract
sets ACA.



Cantor's Representation of Ordinals

Theorem (Cantor, 1897) For every ordinal 5 > 0 there exist unique
ordinals By > (81 > --- > (3, such that

B=wh 4. . 4w (1)

The representation of 3 in (1) is called the Cantor normal form.

We shall write 8 =_,, w™ + ---w’ to convey that By > 31 > --- > By.
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A Representation for g

» &g denotes the least ordinal o > 0 such that

B<a = W <a

> 2o is the least ordinal « such that w® = a.

> 3 < g9 has a Cantor normal form with exponents §; < 8 and these
exponents have Cantor normal forms with yet again smaller
exponents. As this process must terminate, ordinals < g¢ can be
coded by natural numbers.
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The theory ACA|

ACA/ is ACA, plus the axiom

YXAY[(Y)o = X A Yn(Y)ni1 = jump((Y)n)].

» Hindman's Theorem and the Auslander/Ellis theorem are provable in
ACA;.
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ex and ACA{

Theorem: Over RCA the following are equivalent:

1. ACA;

2. VX [WO(X) — WO(ex)].

» A. Marcone, A. Montalban: The epsilon function for computability
theorists, draft, 2007.

» B. Afshari, R.: Reverse Mathematics and Well-ordering Principles: A
pilot study, APAL 160 (2009) 231-237.



The ordering <.,

Let X = (X, <x) be an ordering where X C N.

<e, and its field |ex| are inductively defined as follows:
1.0€e |€x|
2. g, € |ex]| for every u € X, where ¢, := (0, u).
3. Ifag,...,an€lex], n>1and a, <., ... <., o, then

WM L+ w € ex]

where w® + ...+ w* = (1, {(a1,...,qn)).
4. If a € |ex| and « is not of the form ¢, then w® € |ex|, where
w® = (2, a).



0 <cp €y forall ue X.
0 <cp W+ ...+ w* for all w™ 4 ...+ w* € |ex].
€y <ey €vifuve Xandu<, v.

If w* + ... +w* € lex|, ue€ X and a1 <., &, then
WM W < ey

5. fw* + ... +w* €lex|, ue X, and g, <c, a1 Or £, = oy, then
Ey <epx WM+ .. W,

6. If w4+ ... +w and WM + ... +wln € |ex|, then

> e

W0 <oy WLt WP iff
n<mAVi<naj=p; or
i < min(n, m)[ey <o Bi ANVYj <i aj=pfj].

Let ex = (lex|, <ex)-
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Ordinal representation systems
1904-1909

Hardy (1904) wanted to “construct” a subset of R of size N;.

Hardy gives explicit representations for all ordinals < w?.
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O. Veblen, 1908

Veblen extended the initial segment of the countable for which
fundamental sequences can be given effectively.
» He applied two new operations to continuous increasing functions
on ordinals:
» Derivation
» Transfinite Iteration
» Let ON be the class of ordinals. A (class) function f : ON — ON is
said to be increasing if « < 3 implies f(«) < () and continuous
(in the order topology on ON) if
f(

l = lim f
lim ag) = lim #(ag)

holds for every limit ordinal A and increasing sequence (a¢)e<x.
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Derivations

v

f is called normal if it is increasing and continuous.

» The function 8 +— w + 3 is normal while 8 — 8 4 w is not
continuous at w since limg<.,(§ +w) = w but
(limecw &) +w=w + w.

» The derivative f’ of a function f : ON — ON is the function which
enumerates in increasing order the solutions of the equation

fla) = o,

also called the fixed points of f.

» If f is a normal function,

{a: f(a) =a}

is a proper class and f’ will be a normal function, too.
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A Hierarchy of Ordinal Functions

v

Given a normal function f : ON — ON, define a hierarchy of normal
functions as follows:

f=f
fa+1 - fal

v

v

(&) = & element of ﬂ {Fixed points of f,} for A limit.

a<
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The Feferman-Schutte Ordinal g

» Starting with the normal function f(¢) = w®, the function f, is
usually denoted by

Po-

> The least ordinal v > 0 closed under «, 8 — o (8), i.e. the least
ordinal > 0 satisfying

(Va, B <) walB) <7

is the famous ordinal 'y which Feferman and Schiitte determined to
be the least ordinal ‘unreachable’ by certain autonomous
progressions of theories.
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Comparison of -terms

Theorem. -comparison

(1) ®a(B1) = @a,(B2) holds iff one of the following conditions is
satisfied:
1. o1 < 2 and B1 = @a,(B2)
2. a1 = Q2 and ﬂl :ﬁz
3. a2 < a1 and @a,(51) = Bo.
(il) ©a,(B1) < Yay(B2) holds iff one of the following conditions is
satisfied:
1. a1 < a2 and f1 < @a,(62)
2. a1 =azand 81 < 3
3. ap < a1 and (pal(ﬂl) < ﬂz.
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Theorem: (Friedman, unpublished) Over RCA; the following are
equivalent:

1. ATRy

2. VX [WO(X) — WO(X0)].

» Friedman's proof uses computability theory and also some proof
theory. Among other things it uses a result which states that if
P C P(w) x P(w) is arithmetic, then there is no sequence
{An | n € w} such that

> for every n, An41 is the unique set such that P(An, Ans1),
> for every n, A, <1 An.
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ATR; and ©X0

Theorem: Over RCA the following are equivalent:

1. ATRg

2. VX [WO(X) — WO(X0)].

» A. Marcone, A. Montalban: The Veblen function for computability
theorists, JSL 76 (2011) 575-602.

» R. and Weiermann, Reverse mathematics and well-ordering
principles, Computability in Context: Computation and Logic in the
Real World (S. B. Cooper and A. Sorbi, eds.) (Imperial College
Press, 2011) 351-370.
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Countable coded w-models

» An w-model of a theory T in the language of second order
arithmetic is one where the first order part is standard.

» Such a model is isomorphic to one of the form
m=(N,%,0,1,+, x,€)

with X C P(N).
» Definition. 9J1 is a countable coded w-model of T if

X={(C)n|neN}

for some C C N where (C), = {k | 2"3k € C}.
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Theorem*

Over RCA, the following are equivalent:

1. VX [WO(X) — WO(x)]

2. Every set is contained in an w-model of ATR.

R., w-models and well-ordering principles. In: N. Tennant (ed.):

Foundational Adventures: Essays in Honor of Harvey M. Friedman.
(2014)



Lemma

ATR, can be axiomatized via a single sentence I3 sentence
VX C(X)
where C(X) is 1.

Proof: This is a standard result. See Simpson's book.
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(ii) For a closed term t, let t be its numerical value. We shall assume
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Proof of (ii)=(i) of Theorem*

(i)
(ii)

(iii)

Let Uy, Uy, Us, ... be an enumeration of the free set variables of L.

For a closed term t, let t be its numerical value. We shall assume
that all predicate symbols of the language L, are symbols for
primitive recursive relations. Ly contains predicate symbols for the
primitive recursive relations of equality and inequality and possibly
more (or all) primitive recursive relations. If R is a predicate symbol
in L, we denote by R" the primitive recursive relation it stands for.
If ty,...,t, are closed terms the formula R(ty,...,t,)
(—=R(t1,...,ty)) is said to be true if RN(tT, e tN) is true (is false).

r'n
Henceforth a sequent will be a finite set of Ly-formulas without free
number variables.



Sequents will be denoted by ')A, .. ..



Sequents will be denoted by ')A, .. ..

(i) A sequent I is axiomatic if it satisfies at least one of the following
conditions:



Sequents will be denoted by ')A, .. ..
(i) A sequent I is axiomatic if it satisfies at least one of the following
conditions:
1. T contains a true literal, i.e. a true formula of either form
R(ti,...,ts) or =R(t1,...,ty), where R is a predicate symbol in Lo
for a primitive recursive relation and ti,..., t, are closed terms.



Sequents will be denoted by ')A, .. ..
(i) A sequent I is axiomatic if it satisfies at least one of the following

conditions:
1. T contains a true literal, i.e. a true formula of either form
R(ti,...,ts) or =R(t1,...,ty), where R is a predicate symbol in Lo
for a primitive recursive relation and ti,..., t, are closed terms.

2. T contains formul\l!as seUandt ¢ U for some set variable U and
terms s, t withs =1t .



Sequents will be denoted by ')A, .. ..
(i) A sequent I is axiomatic if it satisfies at least one of the following

conditions:
1. T contains a true literal, i.e. a true formula of either form
R(ti,...,ts) or =R(t1,...,ty), where R is a predicate symbol in Lo
for a primitive recursive relation and ti,..., t, are closed terms.

2. T contains formul\l!as seUandt ¢ U for some set variable U and
terms s, t withs =1t .
(iv) A sequent is reducible or a redex if it is not axiomatic and contains
a formula which is not a literal.
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Deduction chains in w-logic

A deduction chain is a finite string
Mo, M,k

of sequents I'; constructed according to the following rules:
(i) Fo = 0.

(ii) T is not axiomatic for i < k.

(iii) If i < k and T is not reducible then

Fiy1 = T, =C(U).
(iv) Every reducible I'; with i < k is of the form
. ET!

where E is not a literal and I} contains only literals.
E is said to be the redex of ;.
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Let i < k and T'; be reducible. I';;; is obtained from I'; =T

follows:
1. If E= EyV E; then

Fiqw = T, Eo, B, T, =C(U)).

2. If E = Ey N\ Ej then
Fipn = T E, T, ~C(U)

where j =0or j =1.
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Let i < k and T'; be reducible. I';;; is obtained from I'; =T
follows:

1. If E= EyV E; then

Fiy1 = I By, E1, T, = C(U)).

2. If E = Ey N\ Ej then

F,-+1 = r:v Eja r:'/a _'C(Ul)

where j =0or j =1.

3. If E=3x F(x) then

F,-+1 = r;aF(m)vrﬁlvﬁC(Ui)ﬂE

LE,TY as

1

where m is the first number such that F(m) does not occur in

Foy... Ti.



(4) If E =Vx F(x) then
M1 = ML F(m), T =C(U;)

) 1

for some m.



(4) If E =Vx F(x) then
i1 = T3 F(m), 7, =C(U))

LA

for some m.
(5) If E=3X F(X) then

rH—l = r:’aF(Um)ar;lv_‘C(Ui)vE
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(4) If E =Vx F(x) then
M1 = ML F(m), T =C(U;)

) 1

for some m.
(5) If E=3X F(X) then

rH—l = r:’aF(Um)ar;lv_‘C(Ui)vE

where m is the first number such that F(U,,) does not occur in
For.... T
(6) If E = VX F(X) then

Fiy1 = T F(Un), T, =C(U;)

where m is the first number such that m # i + 1 and U,, does not
occur in [;.
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The set of deduction chains forms a tree T labeled with strings of
sequents. We will now consider two cases.

Case I: T is not well-founded.
Then T contains an infinite path P.

Now define a set M via
(M); = {t |t¢ U occursin P}.

Set M = (N; {(M),; | i € N}, +,-,0,1, <).
For a formula F, let F € P mean that F occurs in P, i.e. F €T for
some [ € P.

Claim: Under the assignment U; — (M); we have
FeP = M = —F.

The Claim implies that M is an w-model of ATR.
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Case II: T is well-founded

We want to rule this out.

This is the place where the principle
VX [WO(%) — WO(T'x)]

in the guise of cut elimination for an infinitary proof system enters
the stage.

Aiming at a contradiction, suppose that Dg is a well-founded tree.
Let Xy be the Kleene-Brouwer ordering on Dg. Then X is a
well-ordering. In a nutshell, the idea is that a well-founded D¢ gives
rise to a derivation of the empty sequent (contradiction) in the
infinitary proof systems 75° from R.: The strength of Martin-Lof
type theory with a superuniverse. Part Il. Archive for Mathematical
Logic 40 (2001) 207-233.
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The Big Veblen Number

» Veblen extended this idea first to arbitrary finite numbers of
arguments, but then also to transfinite numbers of arguments,
with the proviso that in, for example

Sr(, a1, ..., ),
only a finite number of the arguments
a,

may be non-zero.

> Veblen singled out the ordinal £(0), where E(0) is the least ordinal
0 > 0 which cannot be named in terms of functions

do(0, 01, .., 00)

with n < 0, and each a,, < 4.
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The Big Leap: H. Bachmann 1950

» Bachmann'’s novel idea: Use uncountable ordinals to keep track of
the functions defined by diagonalization.

> Define a set of ordinals 95 closed under successor such that with each
limit A € B is associated an increasing sequence (A[£] : & < 7») of
ordinals A\[¢] € B of length 7, < B and limgr, A[{] = A

> Let Q be the first uncountable ordinal. A hierarchy of functions
(goi)ae% is then obtained as follows:

B b 5\’
@o(B) =1+8 Pat1 = (9%)
@?\ enumerates ﬂ (Range of @?\[ﬂ) A limit, 7\ < Q
§<Ta

apﬁf\ enumerates {8 < Q: @i[ﬂ](O) =0} Alimit, 7\, = Q.
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Using Bachmann'’s idea
Let Q be a “big” ordinal, and definitely an e-number.

Using ordinals < Q and Q itself as building blocks, construct further
ordinals using Cantor’'s normal form, i.e., if a3 > ... > a, have already
been constructed, then we build

o= w4

provided that a > .

In this way we can build all ordinals < g1, where the latter ordinal
denotes the first e-number after Q.

Conversely, we can take any a < eqy1 apart, yielding smaller pieces as
long as the exponents in its Cantor normal are smaller ordinals. More
precisely define:

(i) suppq(0) = 0, suppa(2) = 0.

(i) suppq(a) = suppg(ai) U- - Usuppg(an) if
a=cnyF WM + -+ W > ay.

(iii) suppg(w@) = {a} if « is an e-number < Q.

suppq(«) is a finite set.
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The central idea is to devise an injective function
¥ eqi1 — Q

such that each ¥(«) is an e-number.

Think of ¥ as a collapsing, or better projection function in the sense of
admissible set theory.

For obvious reasons ¥/ cannot be order preserving, but the following can
be realized:

a < B A suppg(a) <J(B) < I(a) <I(B).
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Representation System for the Bachmann-Howard ordinal

(i) 0 € OT(¥) and Q € OT(V).

(i) fag,...,a, € OT(¥), a1 > -+ > a,, then
w4 w € OT(9).

(iii) If @ € OT(¥9) then so is ¥(«).

(OT(¥), <) gives rise to an elementary ordinal representation system.
Here < denotes the restriction to OT(?)).

The Bachmann-Howard ordinal is the order-type of OT(¢#) N Q.
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Associating a dilator with the Bachmann-Howard ordinal
R. and P.F. Valencia Vizcaino, Well ordering principles and bar induction,
2015.

Again, let 2 be a “big” ordinal. Let X be a well-ordering. With each
x € X associate a e-number &, > Q.

(i) 0€ OT,(¥), Q € OT,(V), and €&, € OT, () when x € X.
(i) faq,...,0p € OT,(V), a1 > -+ > apy, then
w4+ w* € 0T, (9).
(iii) If a € OT,(¥¥) then so is 9, ().
To explain the ordering on OT, (¢) one needs to extend suppg: Let
suppg(€x) = 0.One then sets
> E, <€ & x<xy.

>
B,(a) < 0,(8) > a < B A suppiy(a) < U, (B).

(OT,(9), <) gives rise to an ordinal representation system elementary in

X.
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Another Theorem

R. and P.F. Valencia Vizcaino 2015

Over RCA, the following are equivalent:

1. VX [WO(X) — WO(OT, (9))].

2. Every set is contained in a countable coded w-model of BI.



Prospectus



Prospectus

A statement of the form WOP(f) is M} and therefore cannot be
equivalent to a theory whose axioms have a higher complexity, like
for instance Mi-comprehension.



Prospectus

A statement of the form WOP(f) is M} and therefore cannot be
equivalent to a theory whose axioms have a higher complexity, like
for instance Mi-comprehension.

After w-models come 3-models and the theory Mi-CA has a
characterization in terms of countable coded 3-models, namely via
the statement “every set belongs to a countably coded S-model”.
An w-model 2 is a B-model if the concept of well ordering is
absolute with respect to 2.



Prospectus

A statement of the form WOP(f) is M} and therefore cannot be
equivalent to a theory whose axioms have a higher complexity, like
for instance Mi-comprehension.

After w-models come 3-models and the theory Mi-CA has a
characterization in terms of countable coded 3-models, namely via
the statement “every set belongs to a countably coded S-model”.
An w-model 2 is a B-model if the concept of well ordering is
absolute with respect to 2.

The question arises whether the methodology can be extended to
more complex axiom systems, in particular to those characterizable
via S-models?
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First of all, to get equivalences one has to climb up in the type
structure. Given a functor

F: (LO — LO) — (LO — LO),
where LQO is the class of linear orderings, we consider the statement:
WOPP(F): Vf € (LO — LO) [WOP(f) — WOP(F(f))].

There is also a variant of WOPP(F) which should basically
encapsulate the same “power”. Given a functor

G:(LO—-L0O)—LO
consider the statement:

WOPP(G):  Vf € (LO — LO) [WOP(f) — WOP(G(f))].



