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The Infinite

I Proof Theory and Set Theory.

I Set Theory takes much of the Infinite for granted: Full Separation,
Powerset, ....

I Proof Theory aims to analyze the Infinite from a stance of
“Potential Infinity”.

I On the one hand Proof Theory is concerned with concrete objects
(e.g. theories, proofs, ordinal representation systems), but on the
other hand it also deals with ideal properties (e.g.,
well-foundedness, preservation of wf).

I Sometimes the proof-theoretic ordinal of a theory T is defined as the
supremum of its provable prim. rec. or computable well-orderings,
|T |sup.

I This is misleading!

I Sometimes ORS’s are treated as just computable well-orderings.

I The study of computable well-orderings has a long tradition in logic,
also RM, but it’s not of much interest to proof theory.

I One needs a general theory of ordinal representations systems.
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Plan

1. Part I:

1.1 Ordinal Representation Systems

1.2 Well-ordering Principles

1.3 Reverse Mathematics

1.4 Omega models

1.5 Search Trees

2. Part II:

2.1 Higher-Order Well-ordering Principles

2.2 Dilators and Denotation Systems

2.3 β-models and comprehension
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The “Big” Five

For many mathematical theorems τ , there is a weakest natural subsystem
S(τ) of Z2 such that S(τ) proves τ .
Moreover, it has turned out that S(τ) often belongs to a small list of
specific subsystems of Z2. Reverse Mathematics has singled out five
subsystems of Z2:

I RCA0 Recursive Comprehension

I WKL0 Weak König’s Lemma

I ACA0 Arithmetical Comprehension

I ATR0 Arithmetical Transfinite Recursion

I (Π1
1−CA)0 Π1

1-Comprehension
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Aims

To present a general proof-theoretic machinery for investigating
statements about well-orderings from a reverse mathematics point of
view.

These statements are of the form WOP(f )

“ if X is well ordered then f (X ) is well ordered”

where f is a standard proof theoretic function from ordinals to
ordinals.

There are by now several examples of functions f where the
statement WOP(f ) has turned out to be equivalent to one of the
theories of reverse mathematics over a weak base theory (usually
RCA0).
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2X and Arithmetical Comprehension

2X := (|2X |, <
2X

)

Theorem: (Girard 1987) Over RCA0 the following are equivalent:

1. Arithmetical Comprehension

2. ∀X [WO(X)→WO(2X)].

Slogan: one quantifier = one exponential

2X is effectively computable from X.

Abstract property WO of real object 2X versus existence of abstract
sets ACA.
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Cantor’s Representation of Ordinals

Theorem (Cantor, 1897) For every ordinal β > 0 there exist unique
ordinals β0 ≥ β1 ≥ · · · ≥ βn such that

β = ωβ0 + . . .+ ωβn . (1)

The representation of β in (1) is called the Cantor normal form.

We shall write β =
CNF

ωβ1 + · · ·ωβn to convey that β0 ≥ β1 ≥ · · · ≥ βk .
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A Representation for ε0

I ε0 denotes the least ordinal α > 0 such that

β < α ⇒ ωβ < α.

I ε0 is the least ordinal α such that ωα = α.

I β < ε0 has a Cantor normal form with exponents βi < β and these
exponents have Cantor normal forms with yet again smaller
exponents. As this process must terminate, ordinals < ε0 can be
coded by natural numbers.
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The theory ACA+
0

ACA+
0 is ACA0 plus the axiom

∀X ∃Y [(Y )0 = X ∧ ∀n (Y )n+1 = jump((Y )n)].

I Hindman’s Theorem and the Auslander/Ellis theorem are provable in
ACA+

0 .
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εX and ACA+
0

Theorem: Over RCA0 the following are equivalent:

1. ACA+
0

2. ∀X [WO(X)→WO(εX)].

I A. Marcone, A. Montalbán: The epsilon function for computability
theorists, draft, 2007.

I B. Afshari, R.: Reverse Mathematics and Well-ordering Principles: A
pilot study, APAL 160 (2009) 231-237.
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The ordering <εX

Let X = 〈X , <X 〉 be an ordering where X ⊆ N.
<εX and its field |εX| are inductively defined as follows:

1. 0 ∈ |εX|.
2. εu ∈ |εX| for every u ∈ X , where εu := 〈0, u〉.
3. If α1, . . . , αn ∈ |εX|, n > 1 and αn ≤εX . . . ≤εX α1, then

ωα1 + . . .+ ωαn ∈ |εX|

where ωα1 + . . .+ ωαn := 〈1, 〈α1, . . . , αn〉〉.
4. If α ∈ |εX| and α is not of the form εu, then ωα ∈ |εX|, where
ωα := 〈2, α〉.
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1. 0 <εX εu for all u ∈ X .

2. 0 <εX ωα1 + . . .+ ωαn for all ωα1 + . . .+ ωαn ∈ |εX|.
3. εu <εX εv if u, v ∈ X and u <

X
v .

4. If ωα1 + . . .+ ωαn ∈ |εX|, u ∈ X and α1 <εX εu then
ωα1 + . . .+ ωαn <εX εu.

5. If ωα1 + . . .+ ωαn ∈ |εX|, u ∈ X , and εu <εX α1 or εu = α1, then
εu <εX ωα1 + . . .+ ωαn .

6. If ωα1 + . . .+ ωαn and ωβ1 + . . .+ ωβm ∈ |εX|, then

ωα1 + . . .+ ωαn <εX ωβ1 + . . .+ ωβm iff

n < m ∧ ∀i ≤ n αi = βi or

∃i ≤ min(n,m)[αi <εX βi ∧ ∀j < i αj = βj ].

Let εX = 〈|εX|, <εX〉.
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Ordinal representation systems
1904-1909

Hardy (1904) wanted to “construct” a subset of R of size ℵ1.

Hardy gives explicit representations for all ordinals < ω2.
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O. Veblen, 1908

Veblen extended the initial segment of the countable for which
fundamental sequences can be given effectively.

I He applied two new operations to continuous increasing functions
on ordinals:

I Derivation
I Transfinite Iteration

I Let ON be the class of ordinals. A (class) function f : ON→ ON is
said to be increasing if α < β implies f (α) < f (β) and continuous
(in the order topology on ON) if

f ( lim
ξ<λ

αξ) = lim
ξ<λ

f (αξ)

holds for every limit ordinal λ and increasing sequence (αξ)ξ<λ.
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Derivations

I f is called normal if it is increasing and continuous.

I The function β 7→ ω + β is normal while β 7→ β + ω is not
continuous at ω since limξ<ω(ξ + ω) = ω but
(limξ<ω ξ) + ω = ω + ω.

I The derivative f ′ of a function f : ON→ ON is the function which
enumerates in increasing order the solutions of the equation

f (α) = α,

also called the fixed points of f .

I If f is a normal function,

{α : f (α) = α}

is a proper class and f ′ will be a normal function, too.
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A Hierarchy of Ordinal Functions

I Given a normal function f : ON→ ON, define a hierarchy of normal
functions as follows:

I f0 = f

I fα+1 = fα
′

I

fλ(ξ) = ξth element of
⋂
α<λ

{Fixed points of fα} for λ limit.
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The Feferman-Schütte Ordinal Γ0

I Starting with the normal function f (ξ) = ωξ, the function fα is
usually denoted by

ϕα.

I The least ordinal γ > 0 closed under α, β 7→ ϕα(β), i.e. the least
ordinal > 0 satisfying

(∀α, β < γ) ϕα(β) < γ

is the famous ordinal Γ0 which Feferman and Schütte determined to
be the least ordinal ‘unreachable’ by certain autonomous
progressions of theories.
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I Starting with the normal function f (ξ) = ωξ, the function fα is
usually denoted by

ϕα.

I The least ordinal γ > 0 closed under α, β 7→ ϕα(β), i.e. the least
ordinal > 0 satisfying

(∀α, β < γ) ϕα(β) < γ

is the famous ordinal Γ0 which Feferman and Schütte determined to
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be the least ordinal ‘unreachable’ by certain autonomous
progressions of theories.



75

Comparison of ϕ-terms

Theorem. ϕ-comparison

(i) ϕα1 (β1) = ϕα2 (β2) holds iff one of the following conditions is
satisfied:

1. α1 < α2 and β1 = ϕα2 (β2)
2. α1 = α2 and β1 = β2

3. α2 < α1 and ϕα1 (β1) = β2.

(ii) ϕα1 (β1) < ϕα2 (β2) holds iff one of the following conditions is
satisfied:

1. α1 < α2 and β1 < ϕα2 (β2)
2. α1 = α2 and β1 < β2

3. α2 < α1 and ϕα1 (β1) < β2.
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ATR0 and ϕX0

Theorem: (Friedman, unpublished) Over RCA0 the following are
equivalent:

1. ATR0

2. ∀X [WO(X)→WO(ϕX0)].

I Friedman’s proof uses computability theory and also some proof
theory. Among other things it uses a result which states that if
P ⊆ P(ω)× P(ω) is arithmetic, then there is no sequence
{An | n ∈ ω} such that

I for every n, An+1 is the unique set such that P(An,An+1),
I for every n, A′

n+1 ≤T An.
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ATR0 and ϕX0

Theorem: Over RCA0 the following are equivalent:

1. ATR0

2. ∀X [WO(X)→WO(ϕX0)].

I A. Marcone, A. Montalbán: The Veblen function for computability
theorists, JSL 76 (2011) 575–602.

I R. and Weiermann, Reverse mathematics and well-ordering
principles, Computability in Context: Computation and Logic in the
Real World (S. B. Cooper and A. Sorbi, eds.) (Imperial College
Press, 2011) 351–370.
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Countable coded ω-models

I An ω-model of a theory T in the language of second order
arithmetic is one where the first order part is standard.

I Such a model is isomorphic to one of the form

M = (N,X, 0, 1,+,×,∈)

with X ⊆ P(N).

I Definition. M is a countable coded ω-model of T if

X = {(C )n | n ∈ N}

for some C ⊆ N where (C )n = {k | 2n3k ∈ C}.
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Theorem∗

Over RCA0 the following are equivalent:

1. ∀X [WO(X)→WO(ΓX)]

2. Every set is contained in an ω-model of ATR.

R., ω-models and well-ordering principles. In: N. Tennant (ed.):
Foundational Adventures: Essays in Honor of Harvey M. Friedman.
(2014)
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Lemma

ATR0 can be axiomatized via a single sentence Π1
2 sentence

∀X C (X )

where C (X ) is Σ1
1.

Proof: This is a standard result. See Simpson’s book.
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Proof of (ii)⇒(i) of Theorem∗

(i) Let U0,U1,U2, . . . be an enumeration of the free set variables of L2.

(ii) For a closed term t, let t
N

be its numerical value. We shall assume
that all predicate symbols of the language L2 are symbols for
primitive recursive relations. L2 contains predicate symbols for the
primitive recursive relations of equality and inequality and possibly
more (or all) primitive recursive relations. If R is a predicate symbol

in L2 we denote by R
N

the primitive recursive relation it stands for.
If t1, . . . , tn are closed terms the formula R(t1, . . . , tn)

(¬R(t1, . . . , tn)) is said to be true if R
N
(t

N

1 , . . . , t
N

n ) is true (is false).

(iii) Henceforth a sequent will be a finite set of L2-formulas without free
number variables.
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Sequents will be denoted by Γ,Λ, . . ..

(i) A sequent Γ is axiomatic if it satisfies at least one of the following
conditions:

1. Γ contains a true literal, i.e. a true formula of either form
R(t1, . . . , tn) or ¬R(t1, . . . , tn), where R is a predicate symbol in L2

for a primitive recursive relation and t1, . . . , tn are closed terms.
2. Γ contains formulas s ∈ U and t /∈ U for some set variable U and

terms s, t with s
N

= t
N

.

(iv) A sequent is reducible or a redex if it is not axiomatic and contains
a formula which is not a literal.
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Deduction chains in ω-logic

A deduction chain is a finite string

Γ0, Γ1, . . . , Γk

of sequents Γi constructed according to the following rules:

(i) Γ0 = ∅.
(ii) Γi is not axiomatic for i < k .

(iii) If i < k and Γi is not reducible then

Γi+1 = Γi ,¬C (Ui ).

(iv) Every reducible Γi with i < k is of the form

Γ′
i ,E , Γ

′′
i

where E is not a literal and Γ′
i contains only literals.

E is said to be the redex of Γi .
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Let i < k and Γi be reducible. Γi+1 is obtained from Γi = Γ′
i ,E , Γ

′′
i as

follows:

1. If E ≡ E0 ∨ E1 then

Γi+1 = Γ′
i ,E0,E1, Γ

′′
i ,¬C (Ui ).

2. If E ≡ E0 ∧ E1 then

Γi+1 = Γ′
i ,Ej , Γ

′′
i ,¬C (Ui )

where j = 0 or j = 1.

3. If E ≡ ∃x F (x) then

Γi+1 = Γ′
i ,F (m̄), Γ′′

i ,¬C (Ui ),E

where m is the first number such that F (m̄) does not occur in
Γ0, . . . , Γi .
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(4) If E ≡ ∀x F (x) then

Γi+1 = Γ′
i ,F (m̄), Γ′′

i ,¬C (Ui )

for some m.

(5) If E ≡ ∃X F (X ) then

Γi+1 = Γ′
i ,F (Um), Γ′′

i ,¬C (Ui ),E

where m is the first number such that F (Um) does not occur in
Γ0, . . . , Γi .

(6) If E ≡ ∀X F (X ) then

Γi+1 = Γ′
i ,F (Um), Γ′′

i ,¬C (Ui )

where m is the first number such that m 6= i + 1 and Um does not
occur in Γi .
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I The set of deduction chains forms a tree T labeled with strings of
sequents. We will now consider two cases.

I Case I: T is not well-founded.

Then T contains an infinite path P.

Now define a set M via

(M)i = {t
N
| t /∈ Ui occurs in P}.

Set M = (N; {(M)i | i ∈ N},+, ·, 0, 1, <).

I For a formula F , let F ∈ P mean that F occurs in P, i.e. F ∈ Γ for
some Γ ∈ P.

I Claim: Under the assignment Ui 7→ (M)i we have

F ∈ P ⇒ M |= ¬F .

I The Claim implies that M is an ω-model of ATR.
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Case II: T is well-founded

We want to rule this out.

This is the place where the principle

∀X [WO(X)→WO(ΓX)]

in the guise of cut elimination for an infinitary proof system enters
the stage.

Aiming at a contradiction, suppose that DQ is a well-founded tree.
Let X0 be the Kleene-Brouwer ordering on DQ . Then X0 is a
well-ordering. In a nutshell, the idea is that a well-founded DQ gives
rise to a derivation of the empty sequent (contradiction) in the
infinitary proof systems T ∞

Q from R.: The strength of Martin-Löf
type theory with a superuniverse. Part II. Archive for Mathematical
Logic 40 (2001) 207-233.
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The Big Veblen Number

I Veblen extended this idea first to arbitrary finite numbers of
arguments, but then also to transfinite numbers of arguments,
with the proviso that in, for example

Φf (α0, α1, . . . , αη),

only a finite number of the arguments

αν

may be non-zero.

I Veblen singled out the ordinal E (0), where E (0) is the least ordinal
δ > 0 which cannot be named in terms of functions

Φ`(α0, α1, . . . , αη)

with η < δ, and each αγ < δ.
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The Big Leap: H. Bachmann 1950

I Bachmann’s novel idea: Use uncountable ordinals to keep track of
the functions defined by diagonalization.

I Define a set of ordinals B closed under successor such that with each
limit λ ∈ B is associated an increasing sequence 〈λ[ξ] : ξ < τλ〉 of
ordinals λ[ξ] ∈ B of length τλ ≤ B and limξ<τλ λ[ξ] = λ.

I Let Ω be the first uncountable ordinal. A hierarchy of functions

(ϕ
B

α)α∈B is then obtained as follows:

ϕ
B

0 (β) = 1 + β ϕ
B

α+1 =
(
ϕ

B

α

)′
ϕ

B

λ enumerates
⋂
ξ<τλ

(Range of ϕ
B

λ[ξ]) λ limit, τλ < Ω

ϕ
B

λ enumerates {β < Ω : ϕ
B

λ[β](0) = β} λ limit, τλ = Ω.
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Using Bachmann’s idea

Let Ω be a “big” ordinal, and definitely an ε-number.

Using ordinals < Ω and Ω itself as building blocks, construct further
ordinals using Cantor’s normal form, i.e., if α1 ≥ . . . ≥ αn have already
been constructed, then we build

α := ωα1 + · · ·+ ωαn

provided that α > α1.

In this way we can build all ordinals < εΩ+1, where the latter ordinal
denotes the first ε-number after Ω.

Conversely, we can take any α < εΩ+1 apart, yielding smaller pieces as
long as the exponents in its Cantor normal are smaller ordinals. More
precisely define:

(i) suppΩ(0) = ∅, suppΩ(Ω) = ∅.
(ii) suppΩ(α) = suppΩ(α1) ∪ · · · ∪ suppΩ(αn) if

α =CNF ω
α1 + · · ·+ ωαn > α1.

(iii) suppΩ(α) = {α} if α is an ε-number < Ω.

suppΩ(α) is a finite set.
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provided that α > α1.

In this way we can build all ordinals < εΩ+1, where the latter ordinal
denotes the first ε-number after Ω.

Conversely, we can take any α < εΩ+1 apart, yielding smaller pieces as
long as the exponents in its Cantor normal are smaller ordinals. More
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The central idea is to devise an injective function

ϑ : εΩ+1 → Ω

such that each ϑ(α) is an ε-number.

Think of ϑ as a collapsing, or better projection function in the sense of
admissible set theory.

For obvious reasons ϑ cannot be order preserving, but the following can
be realized:

α < β ∧ suppΩ(α) < ϑ(β) ↔ ϑ(α) < ϑ(β).
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Representation System for the Bachmann-Howard ordinal

(i) 0 ∈ OT(ϑ) and Ω ∈ OT(ϑ).

(ii) If α1, . . . , αn ∈ OT(ϑ), α1 ≥ · · · ≥ αn, then
ωα1 + · · ·+ ωαn ∈ OT(ϑ).

(iii) If α ∈ OT(ϑ) then so is ϑ(α).

(OT(ϑ), <) gives rise to an elementary ordinal representation system.
Here < denotes the restriction to OT(ϑ).

The Bachmann-Howard ordinal is the order-type of OT(ϑ) ∩ Ω.
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Associating a dilator with the Bachmann-Howard ordinal

R. and P.F. Valencia Vizcáıno, Well ordering principles and bar induction,
2015.

Again, let Ω be a “big” ordinal. Let X be a well-ordering. With each
x ∈ X associate a ε-number Ex > Ω.

(i) 0 ∈ OT
X

(ϑ), Ω ∈ OT
X

(ϑ), and Ex ∈ OT
X

(ϑ) when x ∈ X .

(ii) If α1, . . . , αn ∈ OT
X

(ϑ), α1 ≥ · · · ≥ αn, then
ωα1 + · · ·+ ωαn ∈ OT

X
(ϑ).

(iii) If α ∈ OT
X

(ϑ) then so is ϑ
X

(α).

To explain the ordering on OT
X

(ϑ) one needs to extend suppΩ: Let
suppX

Ω(Ex) = ∅.One then sets

I Ex < Ey ↔ x <X y .

I

ϑ
X

(α) < ϑ
X

(β) ↔ α < β ∧ suppX

Ω(α) < ϑ
X

(β).

(OT
X

(ϑ), <) gives rise to an ordinal representation system elementary in
X.
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R. and P.F. Valencia Vizcáıno, Well ordering principles and bar induction,
2015.

Again, let Ω be a “big” ordinal. Let X be a well-ordering. With each
x ∈ X associate a ε-number Ex > Ω.

(i) 0 ∈ OT
X

(ϑ), Ω ∈ OT
X

(ϑ), and Ex ∈ OT
X

(ϑ) when x ∈ X .

(ii) If α1, . . . , αn ∈ OT
X

(ϑ), α1 ≥ · · · ≥ αn, then
ωα1 + · · ·+ ωαn ∈ OT

X
(ϑ).

(iii) If α ∈ OT
X

(ϑ) then so is ϑ
X

(α).

To explain the ordering on OT
X

(ϑ) one needs to extend suppΩ: Let
suppX

Ω(Ex) = ∅.

One then sets

I Ex < Ey ↔ x <X y .

I

ϑ
X

(α) < ϑ
X

(β) ↔ α < β ∧ suppX

Ω(α) < ϑ
X

(β).

(OT
X

(ϑ), <) gives rise to an ordinal representation system elementary in
X.



165

Associating a dilator with the Bachmann-Howard ordinal
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Another Theorem

R. and P.F. Valencia Vizcáıno 2015

Over RCA0 the following are equivalent:

1. ∀X [WO(X)→WO(OT
X

(ϑ))].

2. Every set is contained in a countable coded ω-model of BI.



169

Another Theorem

R. and P.F. Valencia Vizcáıno 2015
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Prospectus

A statement of the form WOP(f ) is Π1
2 and therefore cannot be

equivalent to a theory whose axioms have a higher complexity, like
for instance Π1

1-comprehension.

After ω-models come β-models and the theory Π1
1-CA has a

characterization in terms of countable coded β-models, namely via
the statement “every set belongs to a countably coded β-model”.
An ω-model A is a β-model if the concept of well ordering is
absolute with respect to A.

The question arises whether the methodology can be extended to
more complex axiom systems, in particular to those characterizable
via β-models?
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First of all, to get equivalences one has to climb up in the type
structure. Given a functor

F : (LO→ LO)→ (LO→ LO),

where LO is the class of linear orderings, we consider the statement:

WOPP(F ) : ∀f ∈ (LO→ LO) [WOP(f )→WOP(F (f ))].

There is also a variant of WOPP(F ) which should basically
encapsulate the same “power”. Given a functor

G : (LO→ LO)→ LO

consider the statement:

WOPP1(G ) : ∀f ∈ (LO→ LO) [WOP(f )→WOP(G (f ))].
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