REVERSE MATHEMATICS OF SOME PRINCIPLES RELATED TO PARTIAL ORDERS

Giovanni Soldà, University of Leeds

Joint work with Marta Fiori Carones, Alberto Marcone and Paul Shafer

August 13th 2019

Reverse Mathematics

The main question

What set existence axioms are needed to prove a theorem?

Reverse Mathematics

The main question

What set existence axioms are needed to prove a theorem?

Giovanni Soldà, Leeds

Reverse Mathematics

The main question

What set existence axioms are needed to prove a theorem?

Definitions and statement

Recall that, given a poset $(P, <_P)$:

- a chain $C \subset P$ is a linearly ordered subset of P.
- an *antichain* $A \subset P$ is a set such that for every $a, b \in A$, a and b are incomparable (so $a \not\downarrow_P b$ and $b \not\downarrow_P a$).
- the *width* of a poset *P* is the supremum of the cardinalities of the antichains of P.

Definitions and statement

Recall that, given a poset $(P, <_P)$:

- a *chain* $C \subset P$ is a linearly ordered subset of P.
- an *antichain* $A \subset P$ is a set such that for every $a, b \in A$, a and b are incomparable (so $a \not\downarrow_P b$ and $b \not\downarrow_P a$).
- the *width* of a poset *P* is the supremum of the cardinalities of the antichains of *P*.

Theorem (Rival and Sands, 1980)

(RS-po) Let P be an infinite partial order of finite width. Then there exists an infinite chain $C \subset P$ such that for every $p \in P$, p is comparable with 0 or infinitely many elements of C.

3 / 12

Rival-Sands for graphs

One might wonder where such a statement comes from. The principle RS-po was introduced as a refinement of a result about graphs:

Theorem (Rival and Sands, 1980)

(RS-g) Let G be an infinite graph, then there exists an infinite subgraph $H \subset G$ such that every vertex $g \in G$ is adjacent to 0, 1 or infinitely many vertices of H.

Moreover, every $h \in H$ is adjacent to 0 or infinitely many other elements of H.

Rival-Sands for graphs

One might wonder where such a statement comes from. The principle RS-po was introduced as a refinement of a result about graphs:

Theorem (Rival and Sands, 1980)

(RS-g) Let G be an infinite graph, then there exists an infinite subgraph $H \subset G$ such that every vertex $g \in G$ is adjacent to 0, 1 or infinitely many vertices of H.

Moreover, every $h \in H$ is adjacent to 0 or infinitely many other elements of H.

This result is interesting because it is, in some sense, a modification of Ramsey's Theorem.

From graphs to posets

As Rival and Sands pointed out, the result above takes a much nicer form under the assumption that G is the comparability graph of a poset *P* of finite width.

From graphs to posets

As Rival and Sands pointed out, the result above takes a much nicer form under the assumption that G is the comparability graph of a poset P of finite width.

With this setting in mind, we could rephrase RS-po as follows:

Theorem (Rival and Sands, 1980)

If G_P is the comparability graph of an infinite poset P of finite width, then there exists a complete subgraph $H \subset G_P$ such that every $p \in P$ is adjacent to 0 or infinitely many elements of H.

The theorem above is not, to the best of our knowledge, a trivial corollary of RS-g.

Remarks on the proof of RS-po in ZFC

The original proof of the theorem given by Rival and Sands actually gives a stronger result:

Theorem (Rival and Sands, 1980)

(sRS-po) If P is an infinite poset of finite width, then there is a chain C of order type ω or ω^* such that every element $p \in P$ is comparable with 0 or infinitely many (and hence cofinitely many) elements of C.

A direct translation of the original proof requires Π_1^1 – CA₀ to be carried out (although by a standard result of Reverse Mathematics it cannot be that sRS-po and Π_1^1 – CA₀ are equivalent over RCA₀). The study of the strength of this principle is work in progress.

Remarks on the proof of RS-po in ZFC

The original proof of the theorem given by Rival and Sands actually gives a stronger result:

Theorem (Rival and Sands, 1980)

(sRS-po) If P is an infinite poset of finite width, then there is a chain C of order type ω or ω^* such that every element $p \in P$ is comparable with 0 or infinitely many (and hence cofinitely many) elements of C.

A direct translation of the original proof requires Π^1_1 – CA $_0$ to be carried out (although by a standard result of Reverse Mathematics it cannot be that sRS-po and Π^1_1 – CA $_0$ are equivalent over RCA $_0$).

The study of the strength of this principle is work in progress.

6/12

Remarks on the proof of RS-po in ZFC

The original proof of the theorem given by Rival and Sands actually gives a stronger result:

Theorem (Rival and Sands, 1980)

(sRS-po) If P is an infinite poset of finite width, then there is a chain C of order type ω or ω^* such that every element $p \in P$ is comparable with 0 or infinitely many (and hence cofinitely many) elements of C.

A direct translation of the original proof requires Π_1^1 – CA₀ to be carried out (although by a standard result of Reverse Mathematics it cannot be that sRS-po and Π_1^1 – CA₀ are equivalent over RCA₀). The study of the strength of this principle is work in progress.

- We observe that if P contains a copy of \mathbb{Z} , then that copy is a
- We decompose P into k chains (where k is the width of P).
- Then, we separate every chain into its well-founded and reverse
- Finally, by "counterexample chasing", one sees that it is

- We observe that if P contains a copy of \mathbb{Z} , then that copy is a solution.
- We decompose P into k chains (where k is the width of P).
- Then, we separate every chain into its well-founded and reverse
- Finally, by "counterexample chasing", one sees that it is

- We observe that if P contains a copy of \mathbb{Z} , then that copy is a solution.
- We decompose P into k chains (where k is the width of P). Performing this step already requires WKL₀ (see Hirst, 1987).
- Then, we separate every chain into its well-founded and reverse well-founded part. This requires ACA_0 .
- Finally, by "counterexample chasing", one sees that it is impossible to prevent every ω or ω^* -chain from being a solution. Again, this step requires ACA₀.

- We observe that if P contains a copy of \mathbb{Z} , then that copy is a solution.
- We decompose *P* into *k* chains (where *k* is the width of *P*). Performing this step already requires WKL₀ (see Hirst, 1987).
- Then, we separate every chain into its well-founded and reverse
- Finally, by "counterexample chasing", one sees that it is

- We observe that if P contains a copy of \mathbb{Z} , then that copy is a solution.
- We decompose *P* into *k* chains (where *k* is the width of *P*). Performing this step already requires WKL₀ (see Hirst, 1987).
- Then, we separate every chain into its well-founded and reverse well-founded part. This requires ACA₀.
- Finally, by "counterexample chasing", one sees that it is

- We observe that if P contains a copy of \mathbb{Z} , then that copy is a solution.
- We decompose *P* into *k* chains (where *k* is the width of *P*). Performing this step already requires WKL₀ (see Hirst, 1987).
- Then, we separate every chain into its well-founded and reverse well-founded part. This requires ACA₀.
- Finally, by "counterexample chasing", one sees that it is

- We observe that if P contains a copy of \mathbb{Z} , then that copy is a solution.
- We decompose *P* into *k* chains (where *k* is the width of *P*). Performing this step already requires WKL₀ (see Hirst, 1987).
- Then, we separate every chain into its well-founded and reverse well-founded part. This requires ACA_0 .
- Finally, by "counterexample chasing", one sees that it is impossible to prevent every ω or ω^* -chain from being a solution.

- We observe that if P contains a copy of \mathbb{Z} , then that copy is a solution.
- We decompose *P* into *k* chains (where *k* is the width of *P*). Performing this step already requires WKL₀ (see Hirst, 1987).
- Then, we separate every chain into its well-founded and reverse well-founded part. This requires ACA_0 .
- Finally, by "counterexample chasing", one sees that it is impossible to prevent every ω or ω^* -chain from being a solution. Again, this step requires ACA_0 .

Principles related to RS-po

In order to better understand RS-po, it is useful to analyse some simpler principles related to it.

Definition

- For every $k \in \mathbb{N}$, we define RS-po $_k$ as the restriction of RS-po to posets of width at most k.
- For every $k \in \mathbb{N}$, we define RS-po $_k^{CD}$ the statement "If P is a poset that can be decomposed into k chains, then the conclusion of RS-po holds".

Principles related to RS-po

In order to better understand RS-po, it is useful to analyse some simpler principles related to it.

Definition

- For every $k \in \mathbb{N}$, we define RS-po_k as the restriction of RS-po to posets of width at most k.
- For every $k \in \mathbb{N}$, we define RS-po^{CD} the statement "If P is a poset

Principles related to RS-po

In order to better understand RS-po, it is useful to analyse some simpler principles related to it.

Definition

- For every $k \in \mathbb{N}$, we define RS-po_k as the restriction of RS-po to posets of width at most k.
- For every $k \in \mathbb{N}$, we define RS-po $_k^{\mathsf{CD}}$ the statement "If P is a poset that can be decomposed into k chains, then the conclusion of RS-po holds".

Recursive chain decomposition

Theorem (Kierstead, 1981)

(RCA₀) For every $k \in \mathbb{N}$, if P is a poset of width k, then it can be decomposed into at most 5^k chains.

Recursive chain decomposition

Theorem (Kierstead, 1981)

(RCA₀) For every $k \in \mathbb{N}$, if P is a poset of width k, then it can be decomposed into at most 5^k chains.

The original proof by Kierstead made essential use of strong induction principles. The proof was massaged into an argument in RCA₀ thanks to the help of Keita Yokoyama.

Recursive chain decomposition

Theorem (Kierstead, 1981)

(RCA₀) For every $k \in \mathbb{N}$, if P is a poset of width k, then it can be decomposed into at most 5^k chains.

The original proof by Kierstead made essential use of strong induction principles. The proof was massaged into an argument in RCA₀ thanks to the help of Keita Yokoyama.

It follows that $RCA_0 \vdash \forall k \in \mathbb{N}(RS\text{-po}_{5k}^{CD} \to RS\text{-po}_k)$. Moreover, thanks to the result above, in order to study the strength of RS-po, it is enough to analyse the simpler principle $\forall k RS-po_k^{CD}$.

Results for standard k's

The main result concerning the strength of RS-po $_k$ is the following:

Theorem (Fiori Carones, Marcone, Shafer, S.)

For every $k \in \omega, k \ge 3$, $RCA_0 \vdash ADS \leftrightarrow RS-po_k^{CD}$.

The reversal above is actually a proof that $RCA_0 \vdash RS\text{-}po_3^{CD} \to ADS$. To the best of our knowledge, this seems to be the first case of a genuine mathematical statement being equivalent to ADS.

Results for standard k's

The main result concerning the strength of RS- po_k is the following:

Theorem (Fiori Carones, Marcone, Shafer, S.)

For every $k \in \omega, k \ge 3$, $RCA_0 \vdash ADS \leftrightarrow RS-po_k^{CD}$.

The reversal above is actually a proof that $RCA_0 \vdash RS\text{-po}_3^{CD} \rightarrow ADS$.

To the best of our knowledge, this seems to be the first case of a genuine mathematical statement being equivalent to ADS.

Results for standard k's

The main result concerning the strength of RS-po $_k$ is the following:

Theorem (Fiori Carones, Marcone, Shafer, S.)

For every $k \in \omega, k \ge 3$, $RCA_0 \vdash ADS \leftrightarrow RS-po_k^{CD}$.

The reversal above is actually a proof that $RCA_0 \vdash RS\text{-}po_3^{CD} \to ADS$. To the best of our knowledge, this seems to be the first case of a genuine mathematical statement being equivalent to ADS.

The case k=2

The case k = 2 behaves differently.

Theorem (Fiori Carones, Marcone, Shafer, S.)

$$\mathsf{RCA}_0 \vdash \mathsf{SRT}_2^2 \to \mathsf{RS\text{-}po}_2^\mathsf{CD} \to \mathsf{SADS}$$

$$\mathsf{WKL}_0 \vdash \mathsf{SRT}_2^2 \to \mathsf{RS-po}_2$$

Giovanni Soldà, Leeds

The case k=2

The case k = 2 behaves differently.

Theorem (Fiori Carones, Marcone, Shafer, S.)

$$\mathsf{RCA}_0 \vdash \mathsf{SRT}_2^2 \to \mathsf{RS}\text{-}\mathsf{po}_2^\mathsf{CD} \to \mathsf{SADS}$$

$$\mathsf{WKL}_0 \vdash \mathsf{SRT}_2^2 \to \mathsf{RS-po}_2$$

The case k=2

The case k = 2 behaves differently.

Theorem (Fiori Carones, Marcone, Shafer, S.)

$$\mathsf{RCA}_0 \vdash \mathsf{SRT}_2^2 \to \mathsf{RS}\text{-}\mathsf{po}_2^\mathsf{CD} \to \mathsf{SADS}$$

Using Dilworth's Theorem, we have

Corollary

$$\mathsf{WKL}_0 \vdash \mathsf{SRT}_2^2 \to \mathsf{RS-po}_2$$

By the main result of Chong, Yang, and Slaman, 2010, it follows that RS-po₂ does not imply ADS, and so is strictly weaker than RS-po₃.

References

Chong, C. T., Y. Yang, and T. Slaman (2010). "The metamathematics of stable Ramsey's theorem for pairs". In: URL:

https://math.berkeley.edu/~slaman/papers/SRT22.pdf.

- Hirst, Jeffry L. (1987). "Combinatorics in Subsystems of Second order Arithmetic". PhD thesis. The Pennsylvania State University.
- Kierstead, Henry A. (1981). "An Effective Version of Dilworth's Theorem". In: Transactions of the American Mathematical Society 268.1, pp. 63-77. ISSN: 00029947. URL:

http://www.jstor.org/stable/1998337.

Rival, Ivan and Bill Sands (1980). "On the Adjacency of Vertices to the Vertices of an Infinite Subgraph". In: Journal of the London Mathematical Society s2-21.3, 393-400. DOI: 10.1112/jlms/s2-21.3.393.