On connections between logic on words and limits of graphs

Mai Gehrke, Tomáš Jakl, Luca Reggio ^a

Logic Colloquium (Prague) 13 August 2019

^aThe research discussed has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No.670624)

 $(\mathsf{PrimeFilt}(D), \tau^D, \subseteq) \longleftrightarrow D$

topology generated by $\widehat{a} = \{F \mid a \in F\}$ and $(\widehat{a})^c$, for $a \in D$

 $(\mathsf{PrimeFilt}(D), \tau^D, \subseteq) \longleftrightarrow D$

topology generated by $\widehat{a} = \{F \mid a \in F\}$ and $(\widehat{a})^c$, for $a \in D$

 (X, τ, \leq) \mapsto clopen upsets of X

 $(\mathsf{PrimeFilt}(D), \tau^D, \subseteq) \longleftrightarrow D$

topology generated by $\widehat{a} = \{F \mid a \in F\}$ and $(\widehat{a})^c$, for $a \in D$

$$(X, \tau, \leq) \mapsto \mathsf{clopen}$$
 upsets of X

Example (The space of types) $X_{FO} \leftarrow \mathcal{LT}_{FO}$ • points are *types* \approx equiv. classes of σ -structures M with $v: Var \rightarrow M$ • basic opens $\widehat{\varphi} = \{ [(M, v)] \mid M \models_v \varphi \}$, for $\varphi \in FO(\sigma)$

• Models: words $w \in A^* \approx$ structures $(\{1, \ldots, |w|\}, <, P_a(x))_{a \in A}$

 $P_a(x)$ if "a is on position x"

- Models: words $w \in A^* \approx$ structures $(\{1, \ldots, |w|\}, <, P_a(x))_{a \in A}$
- Sentence φ gives a language $L_{\varphi} = \{w \mid w \models \varphi\} \subseteq A^*$
- "F.O. sentences with $<" \approx$ "star-free languages" [McNaughton, Papert 1971]

- Models: words $w \in A^* \approx$ structures $(\{1, \ldots, |w|\}, <, P_a(x))_{a \in A}$
- Sentence φ gives a language $L_{\varphi} = \{w \mid w \models \varphi\} \subseteq A^*$
- "F.O. sentences with $<" \approx$ "star-free languages" [McNaughton, Papert 1971]
- Semiring quantifiers for more general languages: e.g. $(\exists_{k \mod n} x) \varphi(x)$ if $\varphi(x)$ holds on $(k \mod n)$ -many positions

- Models: words $w \in A^* \approx$ structures $(\{1, \ldots, |w|\}, <, P_a(x))_{a \in A}$
- Sentence φ gives a language $L_{\varphi} = \{w \mid w \models \varphi\} \subseteq A^*$
- "F.O. sentences with $<" \approx$ "star-free languages" [McNaughton, Papert 1971]
- Semiring quantifiers for more general languages:
 e.g. (∃_{k mod n} x) φ(x) if φ(x) holds on (k mod n)-many positions

Duality-theoretically [Gehrke, Petrișan, Reggio]:

$$\mathcal{B} \subseteq \mathcal{P}((A \times 2)^*) \longmapsto \mathcal{B}_{\exists} \subseteq \mathcal{P}(A^*)$$

e.g. $L_{\varphi(x)} \subseteq (A \times 2)^*$ changes to $L_{\exists x.\varphi(x)} \subseteq A^*$

- Models: words $w \in A^* \approx$ structures $(\{1, \ldots, |w|\}, <, P_a(x))_{a \in A}$
- Sentence φ gives a language $L_{\varphi} = \{w \mid w \models \varphi\} \subseteq A^*$
- "F.O. sentences with $<" \approx$ "star-free languages" [McNaughton, Papert 1971]
- Semiring quantifiers for more general languages:
 e.g. (∃_{k mod n} x) φ(x) if φ(x) holds on (k mod n)-many positions

Duality-theoretically [Gehrke, Petrișan, Reggio]:

$$\begin{array}{c} \mathcal{B} \subseteq \mathcal{P}((A \times 2)^*) \longmapsto \mathcal{B}_{\exists} \subseteq \mathcal{P}(A^*) \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

Finite Model Theory

- Fails: compactness, Craig's interpolation property, etc.
- Survives: Ehrenfeucht-Fraïssé games, HPT
- New: 0–1 laws, structural limits, comonadic constructions, etc.

Finite Model Theory

- Fails: compactness, Craig's interpolation property, etc.
- Survives: Ehrenfeucht-Fraïssé games, HPT
- New: 0–1 laws, structural limits, comonadic constructions, etc.

Structural limits [Nešetřil, Ossona de Mendez]

For a formula $\varphi(x_1, \ldots, x_n)$ and a finite σ -structure A,

$$\langle \varphi, A \rangle = \frac{|\{ \ \overline{a} \in A^n \mid A \models \varphi(\overline{a}) \}|}{|A|^n}$$
 (Stone pairing)

Mapping $A \mapsto \langle -, A \rangle$ defines an embedding

$$\operatorname{Fin}(\sigma) \hookrightarrow \mathcal{M}(X_{\operatorname{FO}}, [0, 1])$$

Finite Model Theory

- Fails: compactness, Craig's interpolation property, etc.
- Survives: Ehrenfeucht-Fraïssé games, HPT
- New: 0–1 laws, structural limits, comonadic constructions, etc.

Structural limits [Nešetřil, Ossona de Mendez]

For a formula $\varphi(x_1, \ldots, x_n)$ and a finite σ -structure A,

$$\langle \varphi, A \rangle = \frac{|\{ \ \overline{a} \in A^n \mid A \models \varphi(\overline{a}) \}|}{|A|^n}$$
 (Stone pairing)

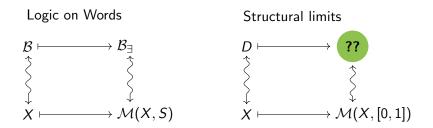
Mapping $A \mapsto \langle -, A \rangle$ defines an embedding

$$\operatorname{Fin}(\sigma) \hookrightarrow \mathcal{M}(X_{\operatorname{FO}}, [0, 1])$$

The limit of $(A_i)_i$ is computed as $\lim_{i \to \infty} \langle -, A \rangle$ in $\mathcal{M}(X_{\mathrm{FO}}, [0, 1])$.

3

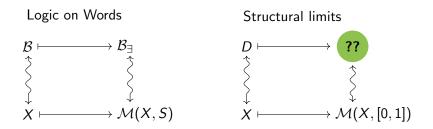
Are there any connections?



Does $\mathcal{M}(-, [0, 1])$ also correspond to adding a layer of quantifiers?

The problem: $\mathcal{M}(X, [0, 1])$ is not a Priestley space

Are there any connections?



Does $\mathcal{M}(-, [0, 1])$ also correspond to adding a layer of quantifiers?

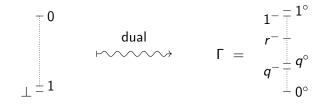
The problem: $\mathcal{M}(X, [0, 1])$ is not a Priestley space

Our solution:

- Double the rationals in [0,1] to get a Priestley space Γ
- Then $\mathcal{M}(X,\Gamma)$ is also a Priestley space \implies has a dual

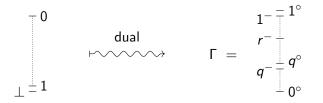
The space $(\Gamma, -, \sim)$

Define Γ as the dual of $([0,1] \cap \mathbb{Q}) < \{\top\}$ reversed:



The space $(\Gamma, -, \sim)$

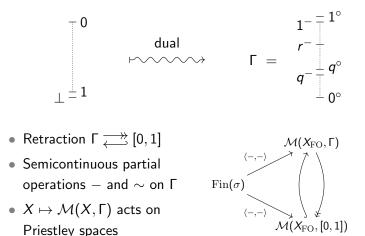
Define Γ as the dual of $([0,1]\cap \mathbb{Q})<\{\top\}$ reversed:



- Retraction $\Gamma \xrightarrow{\longrightarrow} [0, 1]$
- Semicontinuous partial operations and \sim on Γ
- X → M(X, Γ) acts on Priestley spaces

The space $(\Gamma, -, \sim)$

Define Γ as the dual of $([0,1]\cap \mathbb{Q})<\{\top\}$ reversed:



The dual of $X \mapsto \mathcal{M}(X, \Gamma)$

Given D, define P(D) as the *Lindenbaum-Tarski algebra* for the positive propositional logic on variables

$$\mathbb{P}_{\geq oldsymbol{q}} arphi \in D, oldsymbol{q} \in [0,1] \cap \mathbb{Q})$$

and satisfying the rules

$$\begin{array}{ll} (\text{L1}) & p \leq q \text{ implies } \mathbb{P}_{\geq q} \varphi \models \mathbb{P}_{\geq p} \varphi \\ (\text{L2}) & \varphi \leq \psi \text{ implies } \mathbb{P}_{\geq q} \varphi \models \mathbb{P}_{\geq q} \psi \\ (\text{L3}) & \mathbb{P}_{\geq p} \mathbf{f} \models \text{ for } p > 0, \ \models \mathbb{P}_{\geq 0} \mathbf{f}, \text{ and } \models \mathbb{P}_{\geq q} \mathbf{t} \\ (\text{L4}) & \mathbb{P}_{\geq p} \varphi \land \mathbb{P}_{\geq q} \psi \models \mathbb{P}_{\geq p+q-r} (\varphi \lor \psi) \lor \mathbb{P}_{\geq r} (\varphi \land \psi) \text{ whenever} \\ & 0 \leq p+q-r \leq 1 \\ (\text{L5}) & \mathbb{P}_{\geq p+q-r} (\varphi \lor \psi) \land \mathbb{P}_{\geq r} (\varphi \land \psi) \models \mathbb{P}_{\geq p} \varphi \lor \mathbb{P}_{\geq q} \psi \text{ whenever} \\ & 0 \leq p+q-r \leq 1 \end{array}$$

The dual of $X \mapsto \mathcal{M}(X, \Gamma)$

Given D, define P(D) as the Lindenbaum-Tarski algebra for the positive propositional logic on variables

$$\mathbb{P}_{\geq q}\,arphi \qquad ext{(for }arphi\in D,q\in [0,1]\cap \mathbb{Q})$$

and satisfying the rules

$$\begin{array}{ll} (\text{L1}) & p \leq q \text{ implies } \mathbb{P}_{\geq q} \varphi \models \mathbb{P}_{\geq p} \varphi \\ (\text{L2}) & \varphi \leq \psi \text{ implies } \mathbb{P}_{\geq q} \varphi \models \mathbb{P}_{\geq q} \psi \\ (\text{L3}) & \mathbb{P}_{\geq p} \mathbf{f} \models \text{ for } p > 0, \ \models \mathbb{P}_{\geq 0} \mathbf{f}, \text{ and } \models \mathbb{P}_{\geq q} \mathbf{t} \\ (\text{L4}) & \mathbb{P}_{\geq p} \varphi \land \mathbb{P}_{\geq q} \psi \models \mathbb{P}_{\geq p+q-r} (\varphi \lor \psi) \lor \mathbb{P}_{\geq r} (\varphi \land \psi) \text{ whenever} \\ & 0 \leq p+q-r \leq 1 \\ (\text{L5}) & \mathbb{P}_{\geq p+q-r} (\varphi \lor \psi) \land \mathbb{P}_{\geq r} (\varphi \land \psi) \models \mathbb{P}_{\geq p} \varphi \lor \mathbb{P}_{\geq q} \psi \text{ whenever} \\ & 0 \leq p+q-r \leq 1 \end{array}$$

Theorem

If
$$D \iff X$$
 then $\mathbf{P}(D) \iff \mathcal{M}(X, \Gamma)$.

Logical reading of $P(\mathcal{LT}_{FO})$

Recall the embedding $\operatorname{Fin}(\sigma) \hookrightarrow \mathcal{M}(X_{\operatorname{FO}}, \Gamma)$, $A \mapsto \langle -, A \rangle$, where

 $\langle arphi, {\sf A}
angle =$ "the probability that a random assignment satisfies arphi"

The duality $\mathbf{P}(\mathcal{LT}_{FO}) \leftrightarrow \mathcal{M}(X_{FO}, \Gamma)$ provides the semantics:

$$A \models \mathbb{P}_{\geq q} \varphi \quad \text{iff} \quad \langle \varphi, A \rangle \geq q^{\circ}$$

Logical reading of $P(\mathcal{LT}_{FO})$

Recall the embedding $\operatorname{Fin}(\sigma) \hookrightarrow \mathcal{M}(X_{\operatorname{FO}}, \Gamma)$, $A \mapsto \langle -, A \rangle$, where

 $\langle arphi, {\sf A}
angle =$ "the probability that a random assignment satisfies arphi"

The duality $\mathbf{P}(\mathcal{LT}_{FO}) \iff \mathcal{M}(X_{FO}, \Gamma)$ provides the semantics:

$$egin{array}{ccc} A \models \mathbb{P}_{\geq q} \, arphi & ext{iff} & \langle arphi, A
angle \geq q^{\circ} \end{array}$$

 $\mathbb{P}_{\geq q}$ is a quantifier that binds all free variables.

Remark: We can also add negations, then $\mathbb{P}_{\leq q}$ is $\neg \mathbb{P}_{\geq q}$.

Comparison with the Logic on Words

The embedding

$$\operatorname{Fin}(\sigma) \to \mathcal{M}(X_{\operatorname{FO}}, \Gamma), \quad A \mapsto \langle -, A \rangle : X_{\operatorname{FO}} \to \Gamma$$

also used in the logic on words, for $\mathcal{B} \subseteq \mathcal{P}((A \times 2)^*)$,

$$A^* o \mathcal{M}(X_{\mathcal{B}}, S), \quad w \mapsto \langle -, w \rangle : X_{\mathcal{B}} o S$$

where, $B \in \mathcal{B}$, $\langle B, w \rangle = 1_S + \ldots + 1_S$ for every $(w, i) \in B$

Comparison with the Logic on Words

The embedding

$$\operatorname{Fin}(\sigma)
ightarrow \mathcal{M}(X_{\operatorname{FO}}, \Gamma), \quad A \mapsto \langle -, A \rangle : X_{\operatorname{FO}}
ightarrow \Gamma$$

also used in the logic on words, for $\mathcal{B} \subseteq \mathcal{P}((A \times 2)^*)$,

$$A^* o \mathcal{M}(X_{\mathcal{B}}, S), \quad w \mapsto \langle -, w \rangle : X_{\mathcal{B}} \to S$$

where, $B \in \mathcal{B}$, $\langle B, w \rangle = 1_S + \ldots + 1_S$ for every $(w, i) \in B$

- The same constructions!
- It's an embedding into the space of types of an extended logic

Future work

- 1. Model theory and proof theory for $\textbf{P}(\mathcal{LT}_{FO})$
- 2. Nesting of quantifiers
- 3. Relate to the new comonadic approach to the Finite Model Theory, studied by Abramsky et al.

Future work

- 1. Model theory and proof theory for $\textbf{P}(\mathcal{LT}_{FO})$
- 2. Nesting of quantifiers
- 3. Relate to the new comonadic approach to the Finite Model Theory, studied by Abramsky et al.

Thank you for your attention! (check out arXiv:1907.04036)