On connections between logic on words and limits of graphs

Mai Gehrke, Tomás Jakl, Luca Reggio ${ }^{a}$

Logic Colloquium (Prague)
13 August 2019

$$
\begin{aligned}
& \text { UNIVERSITE: } \\
& \text { COTEDAZUR : }
\end{aligned}
$$

[^0]
Priestley duality and model theory

Priestley duality and model theory

PriesSp

(PrimeFilt $\left.(D), \tau^{D}, \subseteq\right)$ D topology generated by $\widehat{a}=\{F \mid a \in F\}$ and $(\widehat{a})^{c}$, for $a \in D$

Priestley duality and model theory

PriesSp

(PrimeFilt $\left.(D), \tau^{D}, \subseteq\right) \rightsquigarrow \sim \sim \sim$
topology generated by $\widehat{a}=\{F \mid a \in F\}$ and $(\widehat{a})^{c}$, for $a \in D$

$$
(X, \tau, \leq)
$$

Priestley duality and model theory

PriesSp

DLat

(PrimeFilt $\left.(D), \tau^{D}, \subseteq\right) \rightsquigarrow D$
topology generated by $\widehat{a}=\{F \mid a \in F\}$ and $(\widehat{a})^{c}$, for $a \in D$

$$
(X, \tau, \leq)
$$

Example (The space of types)
LindenbaumTarski algebra
 for $\mathrm{FO}(\sigma)$

- points are types
\approx equiv. classes of σ-structures M with $v: \operatorname{Var} \rightarrow M$
- basic opens $\widehat{\varphi}=\left\{[(M, v)] \mid M \neq_{v} \varphi\right\}$, for $\varphi \in \mathrm{FO}(\sigma)$

Logic on Words

- Models: words $w \in A^{*} \approx \operatorname{structures}\left(\{1, \ldots,|w|\},<, P_{a}(x)\right)_{a \in A}$
$P_{a}(x)$ if " a is on position x "

Logic on Words

- Models: words $w \in A^{*} \approx \operatorname{structures}\left(\{1, \ldots,|w|\},<, P_{a}(x)\right)_{a \in A}$
- Sentence φ gives a language $L_{\varphi}=\{w \mid w \models \varphi\} \subseteq A^{*}$
- "F.O. sentences with <" \approx "star-free languages"
[McNaughton, Papert 1971]

Logic on Words

- Models: words $w \in A^{*} \approx \operatorname{structures}\left(\{1, \ldots,|w|\},<, P_{a}(x)\right)_{a \in A}$
- Sentence φ gives a language $L_{\varphi}=\{w \mid w \models \varphi\} \subseteq A^{*}$
- "F.O. sentences with $<$ " \approx "star-free languages"
[McNaughton, Papert 1971]
- Semiring quantifiers for more general languages:
e.g. $\left(\exists_{k \bmod n} x\right) \varphi(x)$ if $\varphi(x)$ holds on $(k \bmod n)$-many positions

Logic on Words

- Models: words $w \in A^{*} \approx \operatorname{structures~}\left(\{1, \ldots,|w|\},<, P_{a}(x)\right)_{a \in A}$
- Sentence φ gives a language $L_{\varphi}=\{w \mid w \models \varphi\} \subseteq A^{*}$
- "F.O. sentences with <" \approx "star-free languages"
[McNaughton, Papert 1971]
- Semiring quantifiers for more general languages:
e.g. $\left(\exists_{k \bmod n} x\right) \varphi(x)$ if $\varphi(x)$ holds on $(k \bmod n)$-many positions

Duality-theoretically [Gehrke, Petrișan, Reggio]:
$\mathcal{B} \subseteq \mathcal{P}\left((A \times 2)^{*}\right) \longmapsto \mathcal{B}_{\exists} \subseteq \mathcal{P}\left(A^{*}\right)$
e.g. $L_{\varphi(x)} \subseteq(A \times 2)^{*}$ changes to $L_{\exists x . \varphi(x)} \subseteq A^{*}$

Logic on Words

- Models: words $w \in A^{*} \approx \operatorname{structures~}\left(\{1, \ldots,|w|\},<, P_{a}(x)\right)_{a \in A}$
- Sentence φ gives a language $L_{\varphi}=\{w \mid w \models \varphi\} \subseteq A^{*}$
- "F.O. sentences with <" \approx "star-free languages"
[McNaughton, Papert 1971]
- Semiring quantifiers for more general languages: e.g. $\left(\exists_{k \bmod n} x\right) \varphi(x)$ if $\varphi(x)$ holds on $(k \bmod n)$-many positions

Duality-theoretically [Gehrke, Petrișan, Reggio]:

Finite Model Theory

- Fails: compactness, Craig's interpolation property, etc.
- Survives: Ehrenfeucht-Fraïssé games, HPT
- New: 0-1 laws, structural limits, comonadic constructions, etc.

Finite Model Theory

- Fails: compactness, Craig's interpolation property, etc.
- Survives: Ehrenfeucht-Fraïssé games, HPT
- New: 0-1 laws, structural limits, comonadic constructions, etc.

Structural limits [Nešetřil, Ossona de Mendez]

For a formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$ and a finite σ-structure A,

$$
\langle\varphi, A\rangle=\frac{\left|\left\{\bar{a} \in A^{n} \mid A \models \varphi(\bar{a})\right\}\right|}{|A|^{n}}
$$

(Stone pairing)

Mapping $A \mapsto\langle-, A\rangle$ defines an embedding

$$
\operatorname{Fin}(\sigma) \hookrightarrow \mathcal{M}\left(X_{\mathrm{FO}},[0,1]\right)
$$

Finite Model Theory

- Fails: compactness, Craig's interpolation property, etc.
- Survives: Ehrenfeucht-Fraïssé games, HPT
- New: 0-1 laws, structural limits, comonadic constructions, etc.

Structural limits [Nešetřil, Ossona de Mendez]

For a formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$ and a finite σ-structure A,

$$
\langle\varphi, A\rangle=\frac{\left|\left\{\bar{a} \in A^{n} \mid A \models \varphi(\bar{a})\right\}\right|}{|A|^{n}}
$$

(Stone pairing)

Mapping $A \mapsto\langle-, A\rangle$ defines an embedding

$$
\operatorname{Fin}(\sigma) \hookrightarrow \mathcal{M}\left(X_{\mathrm{FO}},[0,1]\right)
$$

The limit of $\left(A_{i}\right)_{i}$ is computed as $\lim _{i \rightarrow \infty}\langle-, A\rangle$ in $\mathcal{M}\left(X_{\mathrm{FO}},[0,1]\right)$.

Are there any connections?

Logic on Words

Structural limits

Does $\mathcal{M}(-,[0,1])$ also correspond to adding a layer of quantifiers?

The problem: $\mathcal{M}(X,[0,1])$ is not a Priestley space

Are there any connections?

Logic on Words

Structural limits

Does $\mathcal{M}(-,[0,1])$ also correspond to adding a layer of quantifiers?

The problem: $\mathcal{M}(X,[0,1])$ is not a Priestley space

Our solution:

- Double the rationals in $[0,1]$ to get a Priestley space Γ
- Then $\mathcal{M}(X, \Gamma)$ is also a Priestley space \Longrightarrow has a dual

The space $(\Gamma,-, \sim)$

Define Γ as the dual of $([0,1] \cap \mathbb{Q})<\{\top\}$ reversed:

$$
\begin{aligned}
& -0 \\
& \text { dual } \\
& \perp=1 \\
& \Gamma=\begin{array}{l}
1^{-} r^{\circ} \\
r^{-} \\
q^{-} q^{\circ} \\
0^{\circ}
\end{array}
\end{aligned}
$$

The space $(\Gamma,-, \sim)$
Define Γ as the dual of $([0,1] \cap \mathbb{Q})<\{\top\}$ reversed:

$$
\begin{aligned}
& -0 \\
& \perp=1 \\
& 1^{-} 1^{\circ} \\
& r^{-}- \\
& \Gamma=q^{-} q^{\circ} \\
& -0^{\circ}
\end{aligned}
$$

- Retraction $\Gamma \rightleftarrows[0,1]$
- Semicontinuous partial operations - and \sim on Γ
- $X \mapsto \mathcal{M}(X, \Gamma)$ acts on

Priestley spaces

The space $(\Gamma,-, \sim)$

Define Γ as the dual of $([0,1] \cap \mathbb{Q})<\{\top\}$ reversed:
-

The dual of $X \mapsto \mathcal{M}(X, \Gamma)$

Given D, define $\mathbf{P}(D)$ as the Lindenbaum-Tarski algebra for the positive propositional logic on variables

$$
\mathbb{P}_{\geq q} \varphi \quad(\text { for } \varphi \in D, q \in[0,1] \cap \mathbb{Q})
$$

and satisfying the rules
(L1) $p \leq q$ implies $\mathbb{P}_{\geq q} \varphi=\mathbb{P}_{\geq p} \varphi$
(L2) $\varphi \leq \psi$ implies $\mathbb{P}_{\geq q} \varphi \vDash \mathbb{P}_{\geq q} \psi$
(L3) $\mathbb{P}_{\geq p} \mathbf{f} \models$ for $p>0, \vDash \mathbb{P}_{\geq 0} \mathbf{f}$, and $\vDash \mathbb{P}_{\geq q} \mathbf{t}$
(L4) $\mathbb{P}_{\geq p} \varphi \wedge \mathbb{P}_{\geq q} \psi \vDash \mathbb{P}_{\geq p+q-r}(\varphi \vee \psi) \vee \mathbb{P}_{\geq r}(\varphi \wedge \psi)$ whenever $0 \leq p+q-r \leq 1$
(L5) $\mathbb{P}_{\geq p+q-r}(\varphi \vee \psi) \wedge \mathbb{P}_{\geq r}(\varphi \wedge \psi) \models \mathbb{P}_{\geq p} \varphi \vee \mathbb{P}_{\geq q} \psi$ whenever $0 \leq p+q-r \leq 1$

The dual of $X \mapsto \mathcal{M}(X, \Gamma)$

Given D, define $\mathbf{P}(D)$ as the Lindenbaum-Tarski algebra for the positive propositional logic on variables

$$
\mathbb{P}_{\geq q} \varphi \quad(\text { for } \varphi \in D, q \in[0,1] \cap \mathbb{Q})
$$

and satisfying the rules
(L1) $p \leq q$ implies $\mathbb{P}_{\geq q} \varphi=\mathbb{P}_{\geq p} \varphi$
(L2) $\varphi \leq \psi$ implies $\mathbb{P}_{\geq q} \varphi \vDash \mathbb{P}_{\geq q} \psi$
(L3) $\mathbb{P}_{\geq p} \mathbf{f} \models$ for $p>0, \models \mathbb{P}_{\geq 0} \mathbf{f}$, and $\models \mathbb{P}_{\geq q} \mathbf{t}$
(L4) $\mathbb{P}_{\geq p} \varphi \wedge \mathbb{P}_{\geq q} \psi \vDash \mathbb{P}_{\geq p+q-r}(\varphi \vee \psi) \vee \mathbb{P}_{\geq r}(\varphi \wedge \psi)$ whenever $0 \leq p+q-r \leq 1$
(L5) $\mathbb{P}_{\geq p+q-r}(\varphi \vee \psi) \wedge \mathbb{P}_{\geq r}(\varphi \wedge \psi) \models \mathbb{P}_{\geq p} \varphi \vee \mathbb{P}_{\geq q} \psi$ whenever $0 \leq p+q-r \leq 1$

Theorem

If $D \longleftrightarrow X$ then $\mathbf{P}(D) \longleftrightarrow \mathcal{M}(X, \Gamma)$.

Logical reading of $\mathbf{P}\left(\mathcal{L} \mathcal{T}_{\mathrm{FO}}\right)$

Recall the embedding $\operatorname{Fin}(\sigma) \hookrightarrow \mathcal{M}\left(X_{\mathrm{FO}}, \Gamma\right), A \mapsto\langle-, A\rangle$, where
$\langle\varphi, A\rangle=$ "the probability that a random assignment satisfies φ "

The duality $\mathbf{P}\left(\mathcal{L} \mathcal{T}_{\mathrm{FO}}\right) \longleftrightarrow \mathcal{M}\left(X_{\mathrm{FO}}, \Gamma\right)$ provides the semantics:

$$
A \models \mathbb{P}_{\geq q} \varphi \quad \text { iff } \quad\langle\varphi, A\rangle \geq q^{\circ}
$$

Logical reading of $\mathbf{P}\left(\mathcal{L} \mathcal{T}_{\mathrm{FO}}\right)$

Recall the embedding $\operatorname{Fin}(\sigma) \hookrightarrow \mathcal{M}\left(X_{\mathrm{FO}}, \Gamma\right), A \mapsto\langle-, A\rangle$, where $\langle\varphi, A\rangle=$ "the probability that a random assignment satisfies φ "

The duality $\mathbf{P}\left(\mathcal{L} \mathcal{T}_{\mathrm{FO}}\right) \longleftrightarrow \mathcal{M}\left(X_{\mathrm{FO}}, \Gamma\right)$ provides the semantics:

$$
A \models \mathbb{P}_{\geq q} \varphi \quad \text { iff } \quad\langle\varphi, A\rangle \geq q^{\circ}
$$

$\mathbb{P}_{\geq q}$ is a quantifier that binds all free variables.

Remark: We can also add negations, then $\mathbb{P}_{<q}$ is $\neg \mathbb{P}_{\geq q}$.

Comparison with the Logic on Words

The embedding

$$
\operatorname{Fin}(\sigma) \rightarrow \mathcal{M}\left(X_{\mathrm{FO}}, \Gamma\right), \quad A \mapsto\langle-, A\rangle: X_{\mathrm{FO}} \rightarrow \Gamma
$$

also used in the logic on words, for $\mathcal{B} \subseteq \mathcal{P}\left((A \times 2)^{*}\right)$,

$$
A^{*} \rightarrow \mathcal{M}\left(X_{\mathcal{B}}, S\right), \quad w \mapsto\langle-, w\rangle: X_{\mathcal{B}} \rightarrow S
$$

where, $B \in \mathcal{B},\langle B, w\rangle=1_{S}+\ldots+1_{S}$ for every $(w, i) \in B$

Comparison with the Logic on Words

The embedding

$$
\operatorname{Fin}(\sigma) \rightarrow \mathcal{M}\left(X_{\mathrm{FO}}, \Gamma\right), \quad A \mapsto\langle-, A\rangle: X_{\mathrm{FO}} \rightarrow \Gamma
$$

also used in the logic on words, for $\mathcal{B} \subseteq \mathcal{P}\left((A \times 2)^{*}\right)$,

$$
A^{*} \rightarrow \mathcal{M}\left(X_{\mathcal{B}}, S\right), \quad w \mapsto\langle-, w\rangle: X_{\mathcal{B}} \rightarrow S
$$

where, $B \in \mathcal{B},\langle B, w\rangle=1_{S}+\ldots+1_{S}$ for every $(w, i) \in B$

- The same constructions!
- It's an embedding into the space of types of an extended logic

Future work

1. Model theory and proof theory for $\mathbf{P}\left(\mathcal{L} \mathcal{T}_{\text {FO }}\right)$
2. Nesting of quantifiers
3. Relate to the new comonadic approach to the Finite Model Theory, studied by Abramsky et al.

Future work

1. Model theory and proof theory for $\mathbf{P}\left(\mathcal{L} \mathcal{T}_{\text {FO }}\right)$
2. Nesting of quantifiers
3. Relate to the new comonadic approach to the Finite Model Theory, studied by Abramsky et al.

Thank you for your attention!
 (check out arXiv:1907.04036)

[^0]: ${ }^{a}$ The research discussed has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No.670624)

