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Priestley duality and model theory

PriesSp DLat

D(PrimeFilt(D), τD ,⊆)

topology generated by â = {F | a ∈ F} and (â )c , for a ∈ D

(X , τ,≤) clopen upsets of X

Example (The space of types)

LTFOXFO

Lindenbaum-

Tarski algebra

for FO(σ)

• points are types

≈ equiv. classes of σ-structures M with v : Var→ M

• basic opens ϕ̂ = { [(M, v)] | M |=v ϕ}, for ϕ ∈ FO(σ)
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Logic on Words

• Models: words w ∈ A∗ ≈ structures ({1, . . . , |w |}, <,Pa(x))a∈A

Pa(x) if “a is on position x”

• Sentence ϕ gives a language Lϕ = {w | w |= ϕ} ⊆ A∗

• “F.O. sentences with <” ≈ “star-free languages”

[McNaughton, Papert 1971]

• Semiring quantifiers for more general languages:

e.g. (∃ k mod n x) ϕ(x) if ϕ(x) holds on (k mod n)-many positions

Duality-theoretically [Gehrke, Petrişan, Reggio]:

B ⊆ P((A× 2)∗) B∃ ⊆ P(A∗)

e.g. Lϕ(x) ⊆ (A × 2)∗ changes to L∃x .ϕ(x) ⊆ A∗

X M(X , S)

Finitely additive measures

valued in semiring S :

1. µ(∅) = 0S , µ(X ) = 1S ,

2. A ∩ B = ∅ implies

µ(A∪B) = µ(A)+µ(B)
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Finite Model Theory

• Fails: compactness, Craig’s interpolation property, etc.

• Survives: Ehrenfeucht–Fräıssé games, HPT

• New: 0–1 laws, structural limits, comonadic constructions, etc.

Structural limits [Nešeťril, Ossona de Mendez]

For a formula ϕ(x1, . . . , xn) and a finite σ-structure A,

〈ϕ,A〉 =
|{ a ∈ An | A |= ϕ(a) }|

|A|n
(Stone pairing)

Mapping A 7→ 〈−,A〉 defines an embedding

Fin(σ) ↪→M(XFO, [0, 1])

The limit of (Ai )i is computed as lim
i→∞
〈−,A〉 in M(XFO, [0, 1]).

3
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Are there any connections?

Logic on Words

B

X

B∃

M(X ,S)

Structural limits

D

X

??

M(X , [0, 1])

Does M(−, [0, 1]) also correspond to adding a layer of quantifiers?

The problem: M(X , [0, 1]) is not a Priestley space

Our solution:

• Double the rationals in [0,1] to get a Priestley space Γ

• Then M(X , Γ) is also a Priestley space =⇒ has a dual
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The space (Γ,−,∼)

Define Γ as the dual of ([0, 1] ∩Q) < {>} reversed:

⊥ 1

0

dual r−

q◦
q−

1◦
1−

0◦

Γ =

• Retraction Γ [0, 1]

• Semicontinuous partial

operations − and ∼ on Γ

• X 7→ M(X , Γ) acts on

Priestley spaces

M(XFO, Γ)

Fin(σ)

M(XFO, [0, 1])

〈−,−〉

〈−,−〉
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The dual of X 7→ M(X , Γ)

Given D, define P(D) as the Lindenbaum-Tarski algebra for the

positive propositional logic on variables

P≥q ϕ (for ϕ ∈ D, q ∈ [0, 1] ∩Q)

and satisfying the rules

(L1) p ≤ q implies P≥q ϕ |= P≥p ϕ
(L2) ϕ ≤ ψ implies P≥q ϕ |= P≥q ψ
(L3) P≥p f |= for p > 0, |= P≥0 f, and |= P≥q t

(L4) P≥p ϕ ∧ P≥q ψ |= P≥p+q−r (ϕ ∨ ψ) ∨ P≥r (ϕ ∧ ψ) whenever

0 ≤ p + q − r ≤ 1

(L5) P≥p+q−r (ϕ ∨ ψ) ∧ P≥r (ϕ ∧ ψ) |= P≥p ϕ ∨ P≥q ψ whenever

0 ≤ p + q − r ≤ 1

Theorem

If D X then P(D) M(X , Γ).
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Logical reading of P(LTFO)

Recall the embedding Fin(σ) ↪→M(XFO, Γ), A 7→ 〈−,A〉, where

〈ϕ,A〉 = “the probability that a random assignment satisfies ϕ”

The duality P(LTFO) M(XFO, Γ) provides the semantics:

A |= P≥q ϕ iff 〈ϕ,A〉 ≥ q◦

P≥q is a quantifier that binds all free variables.

Remark: We can also add negations, then P<q is ¬P≥q .
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Comparison with the Logic on Words

The embedding

Fin(σ)→M(XFO, Γ), A 7→ 〈−,A〉 : XFO → Γ

also used in the logic on words, for B ⊆ P((A× 2)∗),

A∗ →M(XB,S), w 7→ 〈−,w〉 : XB → S

where, B ∈ B, 〈B,w〉 = 1S + . . .+ 1S for every (w , i) ∈ B

• The same constructions!

• It’s an embedding into the space of types of an extended logic
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Future work

1. Model theory and proof theory for P(LTFO)

2. Nesting of quantifiers

3. Relate to the new comonadic approach to the Finite Model

Theory, studied by Abramsky et al.

Thank you for your attention!
(check out arXiv:1907.04036)
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