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Introduction

= The uniform reflection principle RFN(T) over a theory T is a
schema consisting of sentences

P (Prr(p(x)) = ¢ (x)),
where ¢(x) is a formula with at most the displayed free variable.
"o(x)' denotes sub(7@', X', num(x)).

= The schema TI(gg) of transfinite induction up to &g consists of
formulas

Vx (Vy < x o(y) = ¢(x)) = Vx ¢(x),

where < defines a primitive recursive well-ordering of order type e.



= In first order arithmetic we have
EA URFN(EA) = PA,
where EA is Kalméar elementary arithmetic, and
PA URFN(PA) = PAU TI(eo).
From Kreisel and Lévy 1968.

= Fine structure for fragments of PA.

For every n > 1,

EAURFNy, ,(EA) = EAURFNy,  (EA) = EA U,

From Leivant 1983.



= Two-sorted language with x, y, z, ... for numbers and
X,Y,Z, ... for sets of numbers.

Signature: 0,1,+,-,=, <, €.

First order terms: x |0 |1|s+t|s-t.
Second order terms: X.

Formulas: s=t|s<t|seX|—,A,V,V,3
= A formulais [T} (2}) if it is of the form
VXl (E|X1) QXn (2

where ¢ is arithmetical, that is, ¢ does not contain set quantifiers
VX and 3X.



Full second order arithmetic is:

= PA with induction schema extended to all formulas of second
order arithmetic;

= comprehension schema

AXVx (x € X <> p(x)).

Main subsystems of reverse mathematics: RCAq (existence of
recursive sets), WKLy (existence of paths through 0-1 infinite
trees), ACAq (existence of Turing jump), ATRg (existence of
Turing jump iterations along recursive well-orderings), Hll-CAO
(existence of hyperjump).



Main results

For the rest of the talk, Ty is a given theory and T is Ty together
with full induction.

We will consider uniform reflection over Tg and T respectively.

Theorem (Frittaion)
Let To D RCAq be a finitely axiomatizable theory in the language
of second order arithmetic. Let T be Ty together with full

induction. Then
ToURFN(Ty) =T,

and
ToURFN(T) = Ty U TI(eop).

The result does not apply to infinite recursively enumerable
theories.



For a fine characterization of uniform reflection in second order
arithmetic, we need to consider lightface versions of induction and
transfinite induction up to &g.

Let (II1})~ be the restriction of induction to IT} formulas with no
set parameters.

Let (II7})~~ be the restriction of induction to IT} formulas with
no parameters at all.

Similar definitions apply to TI;; (€0).



Fragments

Theorem (Frittaion)

Let Ty be a H21 finitely axiomatizable theory containing RCAq and
n>1. Let T be Ty plus the schema of full induction. Over Ty,

RFN1 (To) = urk o (1)~ = RFNg: (7o)

RFNH1+2(T) = TIH},(E()) D) TIH%(So)i = RFNzl (T)

n+1



Over Ty,

RFNu(To) = (113)~ 11I; = RFN ;1 (To)
RFNg1(To) = (L1})~ 1 = Fan(To)
RFN i (To) = (7)™ 7= RFan To)

N,



Similar diagram for REN(T) and TI(ep).

Under certain hypotheses, the missing arrows denote
nonimplications.

Over ACAo,
= RFN;p1 is axiomatized by a IT} sentence, and

* RFNjy; is axiomatized by an essentially X1 sentence.

TU{p} 7 Rino(T) = Prr(=¢") — —p
(2nd incompleteness).



Uniform reflection is generally stronger than induction and
transfinite induction up to &g.

Example

Let Top = RCAqU {0(”) exists : n € w}.

To URFN(Tp) F ¥x (0% exists).

To U TI(gp) does not prove reflection over Ty.

By compactness, there is a model of Ty U TI(gg) where

Vx (0%) exists) fails.

Similar examples by using hyperjump.



Proof

(1) From uniform reflection to induction (transfinite induction up
to £).

= For every standard n the formula
P(0) AVx (p(x) = @(x +1)) = ¢(7)
is provable in classical logic.
= For every standard n the formula
Vx (Vy < xp(y) = ©(x)) = ¥x < wy o(x)

is provable in RCA (RCAg plus full induction).

(wo =1 and wpt1 = w*n.)

Formalize (1) and (2) in RCA,.



(2) From induction (transfinite induction up to £¢) to uniform
reflection.

= Show
T = To + full induction F Prr,(‘o(x)) = ¢(x),

where Ty is axiomatized by 1.

Arguing in T, show by induction that every sequent in a finite cut
free proof of =), p(n) is true. Use a partial truth definition for,
say, formulas of bounded rank. The bound is standard!

In RCAq one can prove cut elimination for classical logic.



= Show
To U TI(c0) F Prr(‘p(x)) = ¢(x),

where Ty is axiomatized by 1, and T = Ty + full induction.

Show by transfinite induction on £q that every sequent in a cut free
w-proof of =), p(n) is true.

In RCAq one can prove:
» if T+ ¢ then }:j—'zﬂw,gp, for some n < w;
w if }%I’With n < w, then }:"—m)r,

where wo(@) = o and wpy1(a) = wn®),



Proof for fragments

(1) From uniform reflection to induction (transfinite induction up
to gp). Count quantifiers!

For instance, if p(x) € IT} has only number parameters (free
number variables other than x), then

Ix (Vy < xp(y) = ¢(x)) = ¥x < wz p(x)
is Z,%H within RCAq (by simple quantifier manipulations).

This shows Ty U RFN21+1(T) =TI (o)™,

where T is Ty plus full induction.



(2) From induction (transfinite induction up to €p) to uniform
reflection. Count quantifiers and tweak proof by induction
(transfinite induction up to &) !

For instance,

To UL + RFN71(To).

Recall that To is axiomatized by a IT} sentence VX 3Y (X, Y)
(e.g., ATRy).

Let VX 3Y ¢(x, X, Y) be a IT} formula with no free variables
other than x, where ©(x, X, Y) is II;.

Work in Tg plus induction for IT} formulas (with parameters!).
Informally. Suppose that VX 3Y ¢(n, X, Y) is provable in Tp.



We aim to prove that VX 3Y ¢(n, X, Y) is true. Suppose, for a
CONTRADICTION, that there is a set Xg such that
VY —p(n, Xo, Y) is true.

We use the number n and the set Xy as parameters in a proof by
induction of the following fact.

For every sequent I in a finite cut free proof of
AXVY =(X,Y),VX3IY p(n, X, Y),

for any given good interpretation of the free variables,
there is a Hil formula in I true under this interpretation.

Conclusion. There must be a true Hll sentence in
AXVYY =(X,Y),VX3Y p(n, X, Y). Contradiction.



The only interesting cases are the ones involving the formulas in
the end sequent.

= We have an inference of the form
rYY =(U,Y)
MaAxXvy —¢(X,Y)

Under any interpretation, VY —¢(U, Y) is false. In fact, we are
assuming VX 3Y (X, Y).

= We have an inference of the form
re(n, U, V)
M,3Y e U,Y)

A good interpretation interprets the variable U as the set Xy. Now,
o(n, U, V) is false under any good interpretation. O



Future

= Study fragments of induction and their parameter free ~ and =~

siblings from a model theoretic point of view.
= Study relation with local reflection.

= Study iterations.
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Thanks for your attention!



	
	

