Uniform reflection in second order arithmetic

Emanuele Frittaion University of Leeds

> LC 2019 Prague

Introduction

• The uniform reflection principle $\operatorname{RFN}(T)$ over a theory T is a schema consisting of sentences

$$\forall x \left(\Pr_{\mathcal{T}} \left(\varphi(\dot{x}) \right) \to \varphi(x) \right),$$

where $\varphi(x)$ is a formula with at most the displayed free variable. $\left[\varphi(\dot{x})\right]$ denotes $\operatorname{sub}(\overline{\varphi}, \overline{x}, \operatorname{num}(x))$.

• The schema $\mathrm{TI}(\varepsilon_0)$ of transfinite induction up to ε_0 consists of formulas

$$\forall x \, (\forall y \prec x \, \varphi(y) \rightarrow \varphi(x)) \rightarrow \forall x \, \varphi(x),$$

where \prec defines a primitive recursive well-ordering of order type ε_0 .

In first order arithmetic we have

 $\mathsf{E}\mathsf{A}\cup\operatorname{RFN}(\mathsf{E}\mathsf{A})=\mathsf{P}\mathsf{A},$

where EA is Kalmár elementary arithmetic, and

$$\mathsf{PA} \cup \operatorname{RFN}(\mathsf{PA}) = \mathsf{PA} \cup \operatorname{TI}(\varepsilon_0).$$

From Kreisel and Lévy 1968.

• Fine structure for fragments of PA.

For every $n \ge 1$,

 $\mathsf{E}\mathsf{A} \cup \operatorname{RFN}_{\Pi_{n+2}}(\mathsf{E}\mathsf{A}) = \mathsf{E}\mathsf{A} \cup \operatorname{RFN}_{\Sigma_{n+1}}(\mathsf{E}\mathsf{A}) = \mathsf{E}\mathsf{A} \cup \operatorname{I}\Pi_n.$

From Leivant 1983.

• Two-sorted language with *x*, *y*, *z*, ... for numbers and *X*, *Y*, *Z*, ... for sets of numbers.

Signature: $0, 1, +, \cdot, =, <, \in$.

First order terms: $x \mid 0 \mid 1 \mid s + t \mid s \cdot t$. Second order terms: *X*.

Formulas: $s = t \mid s < t \mid s \in X \mid \neg, \land, \lor, \forall, \exists$.

• A formula is $\Pi^1_n(\Sigma^1_n)$ if it is of the form

 $\forall X_1 (\exists X_1) \dots Q X_n \varphi,$

where φ is arithmetical, that is, φ does not contain set quantifiers $\forall X$ and $\exists X$.

Full second order arithmetic is:

 PA with induction schema extended to all formulas of second order arithmetic;

comprehension schema

$$\exists X \,\forall x \, (x \in X \leftrightarrow \varphi(x)).$$

Main subsystems of reverse mathematics: RCA₀ (existence of recursive sets), WKL₀ (existence of paths through 0-1 infinite trees), ACA₀ (existence of Turing jump), ATR₀ (existence of Turing jump iterations along recursive well-orderings), Π_1^1 -CA₀ (existence of hyperjump).

Main results

For the rest of the talk, T_0 is a given theory and T is T_0 together with full induction.

We will consider uniform reflection over T_0 and T respectively.

Theorem (Frittaion)

Let $T_0 \supseteq RCA_0$ be a finitely axiomatizable theory in the language of second order arithmetic. Let T be T_0 together with full induction. Then

 $T_0 \cup \operatorname{RFN}(T_0) = T,$

and

$$T_0 \cup \operatorname{RFN}(T) = T_0 \cup \operatorname{TI}(\varepsilon_0).$$

The result does not apply to infinite recursively enumerable theories.

For a fine characterization of uniform reflection in second order arithmetic, we need to consider lightface versions of induction and transfinite induction up to ε_0 .

Let $(I\Pi_n^1)^-$ be the restriction of induction to Π_n^1 formulas with no set parameters.

Let $(I\Pi_n^1)^{--}$ be the restriction of induction to Π_n^1 formulas with no parameters at all.

Similar definitions apply to $TI_{\Pi_n^1}(\varepsilon_0)$.

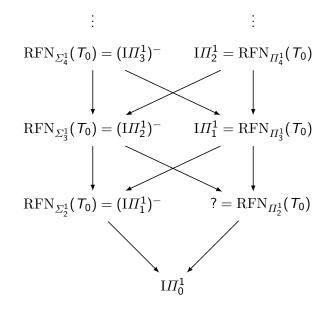
Fragments

Theorem (Frittaion)

Let T_0 be a Π_2^1 finitely axiomatizable theory containing RCA₀ and $n \ge 1$. Let T be T_0 plus the schema of full induction. Over T_0 ,

$$\operatorname{RFN}_{\Pi_{n+2}^{1}}(\mathcal{T}_{0}) = \operatorname{III}_{n}^{1} \supseteq (\operatorname{III}_{n}^{1})^{-} = \operatorname{RFN}_{\Sigma_{n+1}^{1}}(\mathcal{T}_{0})$$
$$\operatorname{RFN}_{\Pi_{n+2}^{1}}(\mathcal{T}) = \operatorname{TI}_{\Pi_{n}^{1}}(\varepsilon_{0}) \supseteq \operatorname{TI}_{\Pi_{n}^{1}}(\varepsilon_{0})^{-} = \operatorname{RFN}_{\Sigma_{n+1}^{1}}(\mathcal{T})$$

Over T_0 ,



Similar diagram for $\operatorname{RFN}(T)$ and $\operatorname{TI}(\varepsilon_0)$.

Under certain hypotheses, the missing arrows denote nonimplications.

Over ACA₀,

- $\operatorname{RFN}_{\Pi^1_n}$ is axiomatized by a Π^1_n sentence, and
- $\operatorname{RFN}_{\Sigma^1_n}$ is axiomatized by an essentially Σ^1_n sentence.

 $T \cup \{\varphi\} \not\vdash \operatorname{Rfn}_{\neg\varphi}(T) = \operatorname{Pr}_{T}(\ulcorner \neg \varphi \urcorner) \to \neg \varphi$ (2nd incompleteness). Uniform reflection is generally stronger than induction and transfinite induction up to ε_0 .

Example

Let $T_0 = \mathsf{RCA}_0 \cup \{0^{(n)} \text{ exists } : n \in \omega\}.$

 $T_0 \cup \operatorname{RFN}(T_0) \vdash \forall x (0^{(x)} \text{ exists}).$

 $T_0 \cup TI(\varepsilon_0)$ does not prove reflection over T_0 .

By compactness, there is a model of $T_0 \cup TI(\varepsilon_0)$ where $\forall x (0^{(x)} \text{ exists})$ fails.

Similar examples by using hyperjump.

Proof

(1) From uniform reflection to induction (transfinite induction up to ε_0).

• For every standard *n* the formula

$$\varphi(0) \land \forall x \, (\varphi(x)
ightarrow \varphi(x+1))
ightarrow \varphi(ar{n})$$

- is provable in classical logic.
- For every standard *n* the formula

$$\forall x \, (\forall y \prec x \, \varphi(y) \rightarrow \varphi(x)) \rightarrow \forall x \prec \omega_n \, \varphi(x)$$

is provable in RCA (RCA₀ plus full induction).

$$(\omega_0 = 1 \text{ and } \omega_{n+1} = \omega^{\omega_n}.)$$

Formalize (1) and (2) in RCA₀.

(2) From induction (transfinite induction up to ε_0) to uniform reflection.

Show

$$T = T_0 + \text{full induction} \vdash \Pr_{T_0}(\left[\varphi(\dot{x}) \right]) \to \varphi(x),$$

where T_0 is axiomatized by ψ .

Arguing in \mathcal{T} , show by induction that every sequent in a finite cut free proof of $\neg \psi, \varphi(\bar{n})$ is true. Use a partial truth definition for, say, formulas of bounded rank. The bound is standard!

In RCA_0 one can prove cut elimination for classical logic.

Show

$$\mathcal{T}_0 \cup \mathrm{TI}(\varepsilon_0) \vdash \Pr_{\mathcal{T}}(\left[\varphi(\dot{x}) \right]) \to \varphi(x),$$

where T_0 is axiomatized by ψ , and $T = T_0 + \text{full induction}$.

Show by transfinite induction on ε_0 that every sequent in a cut free ω -proof of $\neg \psi, \varphi(\bar{n})$ is true.

In RCA_0 one can prove:

• if
$$T \vdash \varphi$$
 then $|\frac{\omega \cdot 2}{n} \neg \psi, \varphi$, for some $n < \omega$;

• if
$$\left|\frac{\alpha}{n}\right|^{\alpha}$$
 with $n < \omega$, then $\left|\frac{\omega_n(\alpha)}{0}\right|^{\alpha}$,

where $\omega_0(\alpha) = \alpha$ and $\omega_{n+1}(\alpha) = \omega^{\omega_n(\alpha)}$.

Proof for fragments

(1) From uniform reflection to induction (transfinite induction up to ε_0). Count quantifiers!

For instance, if $\varphi(x) \in \Pi_n^1$ has only number parameters (free number variables other than x), then

$$\forall x \, (\forall y \prec x \, \varphi(y) \rightarrow \varphi(x)) \rightarrow \forall x \prec \omega_z \, \varphi(x)$$

is Σ_{n+1}^1 within RCA₀ (by simple quantifier manipulations).

This shows $T_0 \cup \operatorname{RFN}_{\Sigma_{n+1}^1}(T) \vdash \operatorname{TI}_{\Pi_n^1}(\varepsilon_0)^-$, where T is T_0 plus full induction. (2) From induction (transfinite induction up to ε_0) to uniform reflection. Count quantifiers and tweak proof by induction (transfinite induction up to ε_0) !

For instance,

$$T_0 \cup \mathrm{I}\Pi_1^1 \vdash \mathrm{RFN}_{\Pi_3^1}(T_0).$$

Recall that T_0 is axiomatized by a Π_2^1 sentence $\forall X \exists Y \psi(X, Y)$ (e.g., ATR₀).

Let $\forall X \exists Y \varphi(x, X, Y)$ be a Π_3^1 formula with no free variables other than x, where $\varphi(x, X, Y)$ is Π_1^1 .

Work in T_0 plus induction for Π_1^1 formulas (with parameters!). Informally. Suppose that $\forall X \exists Y \varphi(\bar{n}, X, Y)$ is provable in T_0 . We aim to prove that $\forall X \exists Y \varphi(\bar{n}, X, Y)$ is true. Suppose, for a CONTRADICTION, that there is a set X_0 such that $\forall Y \neg \varphi(\bar{n}, X_0, Y)$ is true.

We use the number n and the set X_0 as parameters in a proof by induction of the following fact.

For every sequent Γ in a finite cut free proof of

 $\exists X \forall Y \neg \psi(X, Y), \forall X \exists Y \varphi(\bar{n}, X, Y),$

for any given good interpretation of the free variables, there is a Π_1^1 formula in Γ true under this interpretation.

Conclusion. There must be a true Π_1^1 sentence in $\exists X \forall Y \neg \psi(X, Y), \forall X \exists Y \varphi(\bar{n}, X, Y)$. Contradiction.

The only interesting cases are the ones involving the formulas in the end sequent.

• We have an inference of the form

$$\frac{\Gamma, \forall Y \neg \psi(U, Y)}{\Gamma, \exists X \forall Y \neg \psi(X, Y)}$$

Under any interpretation, $\forall Y \neg \psi(U, Y)$ is false. In fact, we are assuming $\forall X \exists Y \psi(X, Y)$.

• We have an inference of the form

$$\frac{\Gamma,\varphi(\bar{n},U,V)}{\Gamma,\exists Y\,\varphi(\bar{n},U,Y)}$$

A good interpretation interprets the variable U as the set X_0 . Now, $\varphi(\bar{n}, U, V)$ is false under any good interpretation.

Future

- Study fragments of induction and their parameter free ⁻ and ⁻⁻ siblings from a model theoretic point of view.
- Study relation with local reflection.
- Study iterations.

References

Emanuele Frittaion. *Uniform reflection in second order arithmetic*. Submitted.

Thanks for your attention!