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Transitive Actions

Let G be a group acting on a set X .

Definition.

If for every pair x , y ∈ X there exists g ∈ G such that gx = y ,
then we say the action is transitive. Moreover, if g ∈ G is uniquely
determined for each pair, then we say the action is sharply
transitive.
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Transitive Actions

Let G be a group acting on a set X .

Definition.

If for every pair x , y ∈ X there exists g ∈ G such that gx = y ,
then we say the action is transitive. Moreover, if g ∈ G is uniquely
determined for each pair, then we say the action is sharply
transitive.

Example.

Rotations of a regular n-gon act sharply transitively on the vertices
of the regular n-gon, for n > 3.

Remark.

Every group acts sharply transitively on itself by left multiplication.
Thus, sharp transitivity criterion does not bring any restrictions on
the group.
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Equivalent Actions

We classify actions up to equivalence.

Definition

Let G act on X , and H on Y . If there is a group isomorphism
α : G → H and a bijection f : X → Y satisfying f (gx) = α(g)f (x)
for all g ∈ G and x ∈ X , then we say that these actions are
equivalent.
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Equivalent Actions

We classify actions up to equivalence.

Definition

Let G act on X , and H on Y . If there is a group isomorphism
α : G → H and a bijection f : X → Y satisfying f (gx) = α(g)f (x)
for all g ∈ G and x ∈ X , then we say that these actions are
equivalent.

Example.

Zn acting on itself by addition is equivalent to the group of
rotations of the regular n-gon acting on the vertices.

Observation.

Every sharply transitive action of a group is equivalent to the left
multiplication action of the group on itself. Hence, classification is
easy in this case.
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Sharp 2-Transitivity

Definition

Let G act on X . If for any distinct x1, x2 ∈ X and distinct
y1, y2 ∈ X , there exists a (unique) g ∈ G such that gxi = yi for
i = 1, 2, then we say G acts (sharply) 2-transitively on X .
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Sharp 2-Transitivity

Definition

Let G act on X . If for any distinct x1, x2 ∈ X and distinct
y1, y2 ∈ X , there exists a (unique) g ∈ G such that gxi = yi for
i = 1, 2, then we say G acts (sharply) 2-transitively on X .

Standard Example.

For any field K , the group of affine transformations
{x 7→ ax + b | a ∈ K ∗, b ∈ K} acting on K is sharply 2-transitive.

It is equivalent to
{(

a b

0 1

)

| a ∈ K ∗, b ∈ K

}

acting on

{[

x

1

]

| x ∈ K

}

.

We will write K ∗
⋉ K+

y K for short, to denote this action.
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Near-Fields

Remark.

In fact, it is enough to assume that K is a near-field; that is, a
skew-field where right distributivity may fail.
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Near-Fields

Remark.

In fact, it is enough to assume that K is a near-field; that is, a
skew-field where right distributivity may fail.

The smallest left near-field which is not a division ring is F9, where
addition is the usual addition and multiplication is defined as:

a ∗ b = ab, if a is a square,
a ∗ b = ab3, if a is not a square.

Zassenhaus showed that, with 7 exceptions, all finite near-fields are
either fields or fields with twisted multiplication as above (1936).
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Near-Fields

Remark.

In fact, it is enough to assume that K is a near-field; that is, a
skew-field where right distributivity may fail.

The smallest left near-field which is not a division ring is F9, where
addition is the usual addition and multiplication is defined as:

a ∗ b = ab, if a is a square,
a ∗ b = ab3, if a is not a square.

Zassenhaus showed that, with 7 exceptions, all finite near-fields are
either fields or fields with twisted multiplication as above (1936).

Theorem (Altınel, B., Wagner, 2019)

All infinite near-fields of finite Morley rank and characteristic not 2
are algebraically closed fields.
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Splitting

Recall the standard example.

G =

{(

a b

0 1

)

| a ∈ K ∗, b ∈ K

}

y

{[

x

1

]

| x ∈ K

}

Observations.

1 The stabilizer of x =

[

0
1

]

is

{(

a 0
0 1

)

| a ∈ K ∗

}

.
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[
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1
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Splitting

Recall the standard example.

G =

{(

a b

0 1

)

| a ∈ K ∗, b ∈ K

}

y

{[

x

1

]

| x ∈ K

}

Observations.

1 The stabilizer of x =

[

0
1

]

is

{(

a 0
0 1

)

| a ∈ K ∗

}

.

2 B =

{(

1 b

0 1

)

| b ∈ K

}

is an abelian normal subgroup.

3 The groups splits as G = stab(x)⋉ B . In the study of sharply
2-transitive groups, when we say the group splits, we mean
with respect to a stabilizer of a point.
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A Natural and Famous Question

Theorem (Karzel, 1971)

A split sharply 2-transitive group is equivalent to the standard
example for some near-field.
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A Natural and Famous Question

Theorem (Karzel, 1971)

A split sharply 2-transitive group is equivalent to the standard
example for some near-field.

Question.

Does every sharply 2-transitive group split?

Some Positive Answers.

• Finite groups (Zassenhaus, 1936)
• Lie groups (Tits, 1952)
• When permutation characteristic is 3 (Kerby, 1972)
• Countable linear groups of pc 6= 2 (Glasner, Gulko, 2014)
• Locally linear groups of odd pc (Glauberman, Mann, Segev,
2015)
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A Natural and Famous Question

First Negative Answers.

There are infinite sharply 2-transitive groups that do not split (in
permutation characteristics 2 and 0).

Rips–Segev–Tent (2017) and Tent–Ziegler (2016) constructed
examples for pc = 2.
Rips–Tent (2019) constructed examples for pc = 0.
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A Natural and Famous Question

First Negative Answers.

There are infinite sharply 2-transitive groups that do not split (in
permutation characteristics 2 and 0).

Rips–Segev–Tent (2017) and Tent–Ziegler (2016) constructed
examples for pc = 2.
Rips–Tent (2019) constructed examples for pc = 0.

Remark.

None of these examples is of finite Morley rank, so the question is
still open in this context.
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PART II: Structural Results

Involutions in the Standard Example

In the standard example, involutions are of the form

(

−1 b

0 1

)

,

for every b ∈ K .

Two cases occur.

Either every involution has a fixed point or all involutions are fixed
point free, because

(

−1 b

0 1

)(

x

1

)

=

(

x

1

)

iff b = 2x .
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Involutions (General Case)

Let |X | > 2, G y X be sharply 2-transitive, and J be the set of
involutions in G .

Observations.

1 J 6= ∅.
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Involutions (General Case)

Let |X | > 2, G y X be sharply 2-transitive, and J be the set of
involutions in G .

Observations.

1 J 6= ∅.

2 J is a single conjugacy class.

3 Hence, either all involutions have a fixed point, or none has
one.

Motivated by the standard example, we make the following
definition.

Definition

If involutions in G have no fixed points, then we say that the
permutation characteristic of G is 2. In short, we write pc(G ) = 2.
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Strongly Real Elements (Standard Example)

Standard Example

In the standard example, strongly real elements are of the form

(

−1 a

0 1

)(

−1 b

0 1

)

=

(

1 a− b

0 1

)

.

Remark.

If the characteristic of the field is p > 0, then orders of non-trivial
strongly real elements are all equal to p. If the characteristic of the
field is 0 then all such elements are torsion-free.
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Strongly Real Elements (General Case)

Assume pc(G ) 6= 2; that is, assume involutions have fixed points.

Observations.

1 J2 is a single conjugacy class under the action of G . Hence,
elements in J2 all have the same order.
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Strongly Real Elements (General Case)

Assume pc(G ) 6= 2; that is, assume involutions have fixed points.

Observations.

1 J2 is a single conjugacy class under the action of G . Hence,
elements in J2 all have the same order.

2 J2 is closed under taking powers. Hence, elements of J2 are
either all torsion-free or all of fixed prime order.

Definition

Depending on the order of elements in J2, we say that the
permutation characteristic of G is 0 or p. We write pc(G ).

Remark.

pc(K ∗
⋉ K+) = char(K ).
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Classification Project for the FMR Context

Problem.

Determine all infinite sharply 2-transitive groups of finite Morley
rank up to equivalence. Are they all equivalent to the standard
example K ∗

⋉ K+
y K for some algebraically closed field K?
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Determine all infinite sharply 2-transitive groups of finite Morley
rank up to equivalence. Are they all equivalent to the standard
example K ∗

⋉ K+
y K for some algebraically closed field K?

This problem can be divided into two.
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Does every sharply 2-transitive group of finite Morley rank split;
that is, can we express G = stab(x)⋉N for some normal subgroup
N and x ∈ X?
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Classification Project for the FMR Context

Problem.

Determine all infinite sharply 2-transitive groups of finite Morley
rank up to equivalence. Are they all equivalent to the standard
example K ∗

⋉ K+
y K for some algebraically closed field K?

This problem can be divided into two.

Question 1.

Does every sharply 2-transitive group of finite Morley rank split;
that is, can we express G = stab(x)⋉N for some normal subgroup
N and x ∈ X?

Question 2.

Is every split sharply 2-transitive group of finite Morley rank
equivalent to the standard example over an algebraically closed
field?
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What was known?

Infinite sharply 2-transitive groups of finite Morley rank

pc Q1 Q2

0 ? Cherlin et al, 1991
2 ? ?
3 Kerby, 1974 ?

p > 5 ? ?

Known positive answers before we started working on the problem.
There were partial structural results also, which are not shown in
the table.
1991 reference is Cherlin, Grundhöfer, Nesin, Völklein.
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What did we do?

Infinite sharply 2-transitive groups of finite Morley rank

pc Q1 Q2

0 ? Cherlin et al, 1991
2 + ?
3 Kerby, 1974 +

p > 5 ? +

+ : Positive answer given by Altınel, B., Wagner in 2019.
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Groups of finite Morley rank

Fact.

In an infinite group of finite Morley rank, all Sylow 2-subgroups are
conjugate. If S is one of them, then one of the following holds:

1 S = 1,

2 S◦ is a non-trivial nilpotent group of bounded exponent,

3 S◦ is a non-trivial divisible abelian group,

4 S◦ is a product of two such subgroups.
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Groups of finite Morley rank

Fact.

In an infinite group of finite Morley rank, all Sylow 2-subgroups are
conjugate. If S is one of them, then one of the following holds:

1 S = 1,

2 S◦ is a non-trivial nilpotent group of bounded exponent,

3 S◦ is a non-trivial divisible abelian group,

4 S◦ is a product of two such subgroups.

Depending on the Sylow 2-subgroup structure, G is said to be of
degenerate, even, odd, or mixed type, respectively.

Big Fact.

An infinite simple group of finite Morley rank and even type is an
algebraic group over an algebraically closed field.
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Back to Sharp 2-Transitivity

Proposition

Let G y X be an infinite connected sharply 2-transitive group of
finite Morley rank.
(a) If pc(G ) = 2, then G is of even type.
(b) If pc(G ) 6= 2, then G is of odd type.

Proof.

(a) Through some rank computations, we know that
Y =

⋃

x∈X stab(x) is a generic subset of G . To get a
contradiction, assume S◦ = T is divisible abelian, then
D =

⋃

g∈G CG (T )g is generic in G , by a result of Cherlin.
Moreover, Y and D are disjoint. This contradicts with the
connectedness of G .
(b) Distinct involutions do not commute in such a group. �
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Socle

Let G y X be a sharply 2-transitive group of finite Morley rank.

Definition

The subgroup of a group generated by minimal normal subgroups
is called the socle of the group. In the finite Morley rank context,
the socle is defined to be generated by infinite definable normal
subgroups that are minimal with respect to these properties.

Fact.

An infinite non-abelian group of finite Morley rank contains a
non-trivial socle.
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Permutation Characteristic 2

In pc = 2, Question 1 is answered.

Theorem (Altınel, B., Wagner, 2019)

Sharply 2-transitive groups of finite Morley rank and of pc = 2 are
split.

Proof.

Assume that G has no non-trivial abelian normal subgroups to get
a contradiction, and let S be the socle of G . Then one can show
that S is an infinite simple group with involutions. Since
pc(G ) = 2, then S is of even type; hence by the classification, S is
an algebraic group over an algebraically closed field. Hence,
stab(x) ∩ S < S is an algebraic Frobenius group. This is a
contradiction since such groups are split (Hertzig, 1961). �
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Permutation Characteristic not 2

When pc 6= 2, Question 2 is answered.

Theorem (Altınel, B., Wagner, 2019)

Split sharply 2-transitive groups of finite Morley rank of pc > 3 are
standard for some algebraically closed field.

Proof is through classifying near-fields of finite Morley rank and
characteristic > 3. The case pc = 0 was done by Cherlin et al in
1991.
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Permutation Characteristic not 2

When pc 6= 2, Question 2 is answered.

Theorem (Altınel, B., Wagner, 2019)

Split sharply 2-transitive groups of finite Morley rank of pc > 3 are
standard for some algebraically closed field.

Proof is through classifying near-fields of finite Morley rank and
characteristic > 3. The case pc = 0 was done by Cherlin et al in
1991.
Full conjecture is solved for pc = 3, by using Kerby’s result from
1974.

Corollary.

Sharply 2-transitive groups of finite Morley rank of pc = 3 are
equivalent to the standard example for some algebraically closed
field.
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PART III: Sharp Multiple Transitivity

Definition

Let G act on X . If for every pairwise distinct x1, . . . , xn ∈ X and
pairwise distinct y1, . . . , yn ∈ X , there exists a (unique) g ∈ G

such that gxi = yi for all i = 1, . . . , n, then we say G acts
(sharply) n-transitively on X .

22 / 29



PART III: Sharp Multiple Transitivity

Definition

Let G act on X . If for every pairwise distinct x1, . . . , xn ∈ X and
pairwise distinct y1, . . . , yn ∈ X , there exists a (unique) g ∈ G

such that gxi = yi for all i = 1, . . . , n, then we say G acts
(sharply) n-transitively on X .

Examples

For all n > 1, Sn acts sharply n-transitively (also sharply
(n − 1)-transitively) on {1, . . . , n}. For all n > 3, An acts sharply
(n − 2)-transitively on {1, . . . , n}.

22 / 29



Sharply 3-Transitive Groups

Theorem (Zassenhaus, 1936)

If G is a finite group acting sharply 3-transitively on a set X , then

(G ,X ) is essentially equivalent to (PGL2(K ),P1(K )), for some

near-field K.
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Sharply 3-Transitive Groups

Theorem (Zassenhaus, 1936)

If G is a finite group acting sharply 3-transitively on a set X , then

(G ,X ) is essentially equivalent to (PGL2(K ),P1(K )), for some

near-field K.

Theorem (Nesin, 1990)

If G is a group of finite Morley rank acting definably and sharply

3-transitively on a set X , then (G ,X ) ∼= (PGL2(K ),P1(K )), for
some algebraically closed field K.

Katrin Tent constructed sharply 3-transitive groups which are not
standard in 2016.
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Classification Theorems for n > 4

Theorem (Jordan, 1872)

Complete list of finite sharply n-transitive groups.

For n = 4; S4, S5, A6, M11.

For n = 5; S5, S6, A7, M12.

For n > 6; Sn, Sn+1, An+2.

24 / 29



Classification Theorems for n > 4

Theorem (Jordan, 1872)

Complete list of finite sharply n-transitive groups.

For n = 4; S4, S5, A6, M11.

For n = 5; S5, S6, A7, M12.

For n > 6; Sn, Sn+1, An+2.

Theorem (Tits, 1952, and Hall, 1954)

There is no infinite group with a sharp n-transitive action, for

n > 4.

24 / 29



Classification Theorems for n > 4

Theorem (Jordan, 1872)

Complete list of finite sharply n-transitive groups.

For n = 4; S4, S5, A6, M11.

For n = 5; S5, S6, A7, M12.

For n > 6; Sn, Sn+1, An+2.

Theorem (Tits, 1952, and Hall, 1954)

There is no infinite group with a sharp n-transitive action, for

n > 4.

The story does not end here!
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An Alternative Definition for n-transitivity

Observation

Let G be a group acting on a set X and n > 2. Then G acts
n-transitively on X iff G acts transitively on X n \ E , where
E = {(x1, . . . , xn) | xi = xj for some i 6= j}.
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An Alternative Definition for n-transitivity

Observation

Let G be a group acting on a set X and n > 2. Then G acts
n-transitively on X iff G acts transitively on X n \ E , where
E = {(x1, . . . , xn) | xi = xj for some i 6= j}.

Note that E is ‘small’, hence X n \ E is ‘large’ or ‘generic’.
Therefore, we can relax the condition on X n \ E while keeping it
large, and obtain new and natural examples.
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Generic Transitivity

Definition

Assume that G acts on X . If G is (sharply) transitive on a generic
subset of X , then we say G acts generically (sharply) transitively
on X .
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Generic Transitivity

Definition

Assume that G acts on X . If G is (sharply) transitive on a generic
subset of X , then we say G acts generically (sharply) transitively
on X .

Example

Let K be a field, then K ∗ acts generically sharply transitively on
K+, but not sharply transitively.
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Generic n-transitivity

Definition

Similarly, if the induced action of G on X n is generically sharply
transitive, then we say G acts generically sharply n-transitively on
X .
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Generic n-transitivity

Definition

Similarly, if the induced action of G on X n is generically sharply
transitive, then we say G acts generically sharply n-transitively on
X .

Examples. For every n > 1, the natural action of:

GLn(K ) on K n is generically sharply n-transitive.

AGLn(K ) on K n is generically sharply (n + 1)-transitive.

PGLn+1(K ) on Pn(K ) is generically sharply (n + 2)-transitive.
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Some Classification Results

Theorem (B., Borovik, 2018)

Let G be a connected group acting on a connected abelian group
V definably, faithfully and generically sharply n-transitively, where
n = rk(V ). If V is not a 2-group, then (G ,V ) ∼= (GLn(K ),K n).

Small cases n = 2, 3 follow from work of Deloro and
Borovik–Deloro, respectively.
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Some Classification Results

Theorem (B., Borovik, 2018)

Let G be a connected group acting on a connected abelian group
V definably, faithfully and generically sharply n-transitively, where
n = rk(V ). If V is not a 2-group, then (G ,V ) ∼= (GLn(K ),K n).

Small cases n = 2, 3 follow from work of Deloro and
Borovik–Deloro, respectively.

Open Question (Borovik, Cherlin, 2008)

Let G be a connected group acting on a set X definably, faithfully
and generically sharply (n + 2)-transitively, where n = rk(X ). Is it
true that (G ,X ) ∼= (PGLn+1(K ),Pn(K )), for some algebraically
closed field K?

Altınel and Wiscons solved this problem for n = 2 and gave a
partial result for n > 3.
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Thanks

Děkuji!
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