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an applied subfield of mathematical logic

goals: to find explicit and uniform witnesses or bounds and to
remove superfluous premises from concrete mathematical
statements by analyzing their proofs
tools used: primarily proof interpretations (modified
realizability, negative translation, functional interpretation)



Proof mining

Proof mining:
an applied subfield of mathematical logic
goals: to find explicit and uniform witnesses or bounds and to
remove superfluous premises from concrete mathematical
statements by analyzing their proofs

tools used: primarily proof interpretations (modified
realizability, negative translation, functional interpretation)



Proof mining

Proof mining:
an applied subfield of mathematical logic
goals: to find explicit and uniform witnesses or bounds and to
remove superfluous premises from concrete mathematical
statements by analyzing their proofs
tools used: primarily proof interpretations (modified
realizability, negative translation, functional interpretation)



A brief history

Early efforts
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the publication of Gödel’s Dialectica interpretation (1958)
Jean-Yves Girard: bounds on van der Waerden numbers by
strategic cut elimination (1987)
Horst Luckhardt: growth conditions on Herbrand terms and
the number of solutions in Roth’s theorem (1989)

Ulrich Kohlenbach: contemporary proof mining

nonlinear analysis, convex optimization et al. (since 2001)
ergodic theory, commutative algebra, differential algebra: work
by Avigad, Towsner, Simmons (since 2007)



A brief history

Early efforts
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Chebyshev approximation

We have the following classical Chebyshev approximation result.

Theorem (de la Vallée Poussin, Young – 1900s)
For every n ∈ N and every continuous f : [0, 1]→ R there is an
unique p ∈ Pn (the set of real polynomials of degree at most n)
such that

‖f − p‖ = min
q∈Pn
‖f − q‖

(where ‖ · ‖ denotes the supremum norm).

Kohlenbach extracted in 1990 a modulus of uniqueness – a
function Ψ with the property that if p1 and p2 are such that
‖f − p1‖, ‖f − p2‖ ≤ min +Ψ(δ), then ‖p1 − p2‖ ≤ δ.

He did this by analyzing the uniqueness proof and obtaining an
approximate version of it. Let us see how the original proof flows.
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A sketch of de la Vallée Poussin’s proof

Take p1 and p2 that attain the minimum distance E . Then also
p1+p2

2 attains the minimum and we denote it by p.

By a result
called the alternation theorem, we have that there is a j ∈ {0, 1}
and x1 < . . . < xn+1 in [0, 1] such that for every i ∈ {1, . . . , n + 1},

(p − f )(xi ) = (−1)i+jE .

Let i ∈ {1, . . . , n + 1} and assume wlog that i + j is even. Then
(p − f )(xi ) = E , so

p1(xi )− f (xi )
2 + p2(xi )− f (xi )

2 = E .

Since ‖p1 − f ‖ = E , p1(xi )− f (xi ) ≤ E . Similarly,
p2(xi )− f (xi ) ≤ E . By the above, we have that both are actually
equal to E and so p1(xi ) = p2(xi ). Since p1 and p2 coincide on at
least n + 1 points, they must be equal.
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Approximating the proof

Let us now see how one approximates the proof on the previous
slide. First, for trivial reasons, the polynomials can be assumed to
be in the closed ball Z of radius 5

2‖f ‖ (which is compact, as it lies
inside the finite dimensional space Pn).

1 for all p1, p2 ∈ Z and all ε > 0, if ‖f − p1‖,
‖f − p2‖ ≤ E + Φ1(ε), then

∥∥∥f − p1+p2
2

∥∥∥ ≤ E + ε.
2 (the “ε-alternation theorem”) for all p ∈ Z and all ε > 0 with
‖f − p‖ ≤ E + Φ2(ε) there is a j ∈ {0, 1} and x1 < . . . < xn+1
in [0, 1] such that for every i ∈ {1, . . . , n + 1},

|(p − f )(xi )− (−1)i+jE | ≤ ε.
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Last steps

I shall omit steps 3 and 4, as I am not going to focus on them.

5 for all p1, p2 ∈ Z and all δ, β > 0, x1 < . . . < xn+1 in [0, 1]
such that for all i ∈ {1, . . . , n}, xi+1 − xi ≥ β and for all
i ∈ {1, . . . , n + 1}, |(p1 − p2)(xi )| ≤ Φ5(β, δ), we have that
‖p1 − p2‖ ≤ δ.

Kohlenbach has extracted moduli Φ1-Φ5 and by putting them
together he obtained the modulus of uniqueness. This was possible,
by the metatheorems of proof mining, because the uniqueness
proof could be formalized in WE-PAω+WKL+QF-AC0,0.
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Directions to follow

Kohlenbach also suggested in his 1990 thesis to extend the
techniques to the following results:

L1-best approximation: analyzed by K. and Paulo Oliva in the
early 2000s
Chebyshev approximation with bounded coefficients

a 1971 result of Roulier and Taylor
its analysis stood for 30 years as an open problem in proof
mining

The last one is what we are going to focus on.
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The result

Theorem (Roulier and Taylor, 1971)
Let n, m ∈ N be such that m ≤ n and (ki )m

i=1 ⊆ N be such that
0 < k1 < . . . < km ≤ n. In addition, let (ai )m

i=1 and (bi )m
i=1 be

finite sequences in R ∪ {±∞} be such that for all i ∈ {1, . . . ,m},
ai ≤ bi , ai 6=∞ and bi 6= −∞. If one sets

K :=
{ n∑

i=0
ci X i ∈ Pn | for all i ∈ {1, . . . ,m}, ai ≤ cki ≤ bi

}
,

then for any continuous f : [0, 1]→ R there is a unique p ∈ K
such that

‖f − p‖ = min
q∈K
‖f − q‖.

The proof resembles the one from before, so we shall focus on the
part which is fundamentally different.
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The approximate form of the new proof

In the ε-alternation step one obtains (among others) an r ≤ n, a
sequence of degrees n ≥ d1 > d2 > . . . > dr+1 = 0 and
x1 < . . . < xr+1 in [0, 1].

In the last step we deal with the difference p1 − p2 as before, only
we split it as p1 − p2 = Q1 + Q2 where Q2 has only terms of
degrees d1, . . . , dr+1.

It is thus enough to show that for each i , ‖Qi‖ ≤ δ
2 .

Q1 is easily bounded by classical methods (using the way the di ’s
were chosen).

For Q2, one must generalize the proof of the original step 5.
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Proof of the original step 5
Set p := p1 − p2. By the classical Lagrangian interpolation
formula, we have that:

p =
n+1∑
j=1

∏
i 6=j

X − xi
xj − xi

 · p(xj).

Since we have, for all x ∈ [0, 1],∣∣∣∣∣∣
∏
i 6=j

X − xi
xj − xi

∣∣∣∣∣∣ ≤ 1∏
i 6=j β|i − j | ≤

1
βn ,

we get, for all x ∈ [0, 1],

|p(x)| ≤
n+1∑
j=1

∣∣∣∣∣∣
∏
i 6=j

X − xi
xj − xi

∣∣∣∣∣∣ · |p(xj)| ≤ (n + 1) · 1
βn · Φ5(β, δ).

Since we want the right hand side to be smaller or equal to δ, one
may take Φ5(β, δ) := βn

n+1 · δ.
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The lemma

Our new step 5 takes the form of the following lemma.

Lemma
Let n, r ∈ N with r ≤ n and (di )r+1

i=1 ⊆ N with
n ≥ d1 > d2 > . . . > dr+1 = 0. Let β, δ > 0 and (xj)r+1

j=1 ⊆ [0, 1]
such that for all j ∈ {1, . . . , r}, xj+1 − xj ≥ β. Suppose that we
have a polynomial

p =
r+1∑
i=1

ηi X di

such that for all j ∈ {1, . . . , r + 1},

|p(xj)| ≤ Φ̃5(β, δ).

Then ‖p‖ ≤ δ.

To obtain Φ̃5, we need to generalize the Lagrangian formula.
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Towards the new formula
Using the form of p in the lemma, we get that for all
j ∈ {1, . . . , r + 1},

p(xj) =
r+1∑
i=1

ηi xdi
j .

Therefore, we have
p

p(x1)
...

p(xr+1)

 =
r+1∑
i=1

ηi


X di

xdi
1
...

xdi
r+1

 ,
so ∣∣∣∣∣∣∣∣∣∣

p X d1 · · · X dr+1

p(x1) xd1
1 · · · xdr+1

1
...

... . . . ...
p(xr+1) xd1

r+1 · · · xdr+1
r+1

∣∣∣∣∣∣∣∣∣∣
= 0.

We are thus led to use Vandermonde determinants.
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Generalizing Vandermonde
Remember the ordinary Vandermonde determinant:

V (y1, . . . , yr+1) :=

∣∣∣∣∣∣∣∣∣∣
y r

1 y r−1
1 · · · 1

y r
2 y r−1

2 · · · 1
...

... . . . ...
y r

r+1 y r−1
r+1 · · · 1

∣∣∣∣∣∣∣∣∣∣
=

∏
1≤i<j≤r+1

(yi − yj).

Now define the following generalization (where h1 > . . . > hr+1):

V (h1, . . . , hr+1; y1, . . . , yr+1) :=

∣∣∣∣∣∣∣∣∣∣
yh1

1 yh2
1 · · · yhr+1

1
yh1

2 yh2
2 · · · yhr+1

2
...

... . . . ...
yh1

r+1 yh2
r+1 · · · yhr+1

r+1

∣∣∣∣∣∣∣∣∣∣
.

Armed with these notations, by expanding the determinant on the
previous slide along its first column, we get that

p =
r+1∑
j=1

(−1)j−1 V (d1, . . . , dr+1; X , x1, . . . , x̂j , . . . , xr+1)
V (d1, . . . , dr+1; x1, . . . , xr+1) · p(xj).
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Young tableaux
We shall need some definitions from algebraic combinatorics to
help us in dealing with those determinants.

partition: a finite sequence (λi )r+1
i=1 ⊆ N with λ1 ≥ . . . ≥ λr+1

we can move bijectively between strictly decreasing sequences
h and partitions λ by the formula λh

i := hi + i − r − 1
if r ∈ N and λ is a partition of length r + 1, then a
semistandard Young tableau of weight λ is a jagged array
with r + 1 rows where for any i ∈ {1, . . . , r + 1}, the i ’th line
has λi entries which are elements of the set {1, . . . , r + 1},
such that the entries on each row are (weakly) increasing and
the entries on each column are strictly increasing

1 1 2 7 8
2 3 3
4 4
5 6
6
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Schur functions
Now, if T is such a semistandard Young tableau in which for each
i ∈ {1, . . . , r + 1}, i appears ti times in T , one denotes by yT the
monomial y t1

1 . . . y tr+1
r+1 . Then the Schur function associated to a

partition λ is defined by

sλ :=
∑
T

yT ,

where T ranges over all semistandard Young tableaux of weight λ.

The result which is relevant to our ends states that for any r and
any strictly decreasing h of length r + 1,

V (h1, . . . , hr+1; y1, . . . , yr+1) = V (y1, . . . , yr+1) · sλh (y1, . . . , yr+1).

A simple proof may be found in:
R. A. Proctor, Equivalence of the combinatorial and the classical
definitions of Schur functions. J. Combin. Theory Ser. A 51, no.
1, 135–137, 1989.
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Back to the formula

The formula for p now becomes

p =
n+1∑
j=1

∏
i 6=j

X − xi
xj − xi

 · p(xj) ·
sλd (X , x1, . . . , x̂j , . . . , xr+1)

sλd (x1, . . . , xr+1) .

This formula differs from the Lagrangian one only by the additional
Schur factors, so we only need to bound those in order to get Φ̃5.



The upper bound

For any partition λ of length r + 1, the number of semistandard
Young tableaux of weight λ can be shown to be

Nλ :=
∏

1≤i<j≤r+1

λi − λj + j − i
j − i .

Moreover, for any n there is a finite number of strictly decreasing
h’s with length smaller or equal to n + 1 and with h1 ≤ n. If we
set, for any n, Nn to be the maximum of all the Nλh ’s for all these
h’s, this number is easily seen to be computable.

Proposition
For all n, r ∈ N with r ≤ n, any strictly decreasing h of length
r + 1 and with h1 ≤ n, and any y1, . . . , yr+1 ∈ [0, 1],

0 ≤ sλh (y1, . . . , yr+1) ≤ Nn.
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The lower bound
First, for all j ∈ {2, . . . , n}, we have that

1 ≥ xk ≥ x2 ≥ x2 − x1 ≥ β.

Since dr+1 = 0, λd
r+1 = 0, so using the following semistandard

Young tableau of weight λd :

2 2 . . . 2 2
3 3
...

r+1

we get that

sλd (x1, . . . , xr+1) ≥ xλ
d
1

2 . . . xλ
d
r

r+1 ≥ β
∑r

i=1 λ
d
i

≥ βr ·λd
1 = βr(d1−r) ≥ βr(n−r) ≥ β

n2
4 .
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Wrapping up

We may take then

Φ̃5(β, δ) := βn+ n2
4

Nn(n + 1) · δ.

The lower bound also shows that the “Lagrange-Schur” formula for
p is well-defined, i.e. that the denominator is nonzero.

In addition, like with the original Lagrange formula, we may also
show the existence of an interpolation polynomial with prescribed
degrees, by reversing the above argument (there is a catch, but it
is easily taken care of).
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The final modulus

Of course, there is much more to the extraction of the modulus.
For example, the Schur formula also plays a role in the
corresponding ε-alternation result.

In the end, we get the modulus
of uniqueness

Ψ(δ) :=

(
χω,n,M( L

2 )
2

) n2
2 +2n

10 · N2
n (n + 1)(nFn + 1) · δ,

which depends (in addition to δ) on
the norm of a polynomial p0 in K ;
the degree n;
a lower bound L on E ;
a modulus of uniform continuity ω for f ;
the norm of f .
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Some remarks

The modulus does not depend on the bounds on the
coefficients, except via p0, which is in line with what
Kohlenbach’s metatheorems predict.

The dependence on the norm of f may be removed at
virtually no cost, by a shifting trick.
The fact that the modulus is linear in δ corresponds to its
coefficient being what approximation theorists call a constant
of strong unicity, the existence of which having been shown
before in this setting only nonconstructively.
One may even remove the dependence on L, though at the
expense of linearity.
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All this can be found in:

A. Sipoş, Bounds on strong unicity for Chebyshev approximation
with bounded coefficients. arXiv:1904.10284 [math.CA], 2019.



Thank you for your attention.


