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Motivation

Proof systems play a crucial role in proof theory, from consistency proofs
and proof mining techniques to the characterization of admissible rules.

Our goal: study proof systems in a generic manner.

Question

Is it possible to prove that some logics do not have a “nice” proof system?

This problem has three sides:

‚ Formalizing nice proof systems;

‚ considering their corresponding logics;

‚ finding an invariant, i.e., a property that the logic of a nice proof
system enjoys.

Prove almost all logics in a certain given class do not enjoy that property.
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Previous work

Theorem (Iemhoff [5])

If a super-intuitionistic logic has a terminating proof system consisting of
focused rules and focused axioms, it has the uniform interpolation
property.

§ Focused axioms are a modest generalization of the axioms of LJ.

§ A focused rule is a rule with one main formula in its consequence
such that the rule respects both the side of this main formula and the
occurrence of atoms in it. Example: Conjunction and disjunction
rules are focused; implication rules are not.

‚ Nice proof systems are focused proof systems;

‚ corresponding logics are super-intuitionistic;

‚ the invariant is uniform interpolation.

Only seven super-intuitionistic logics have uniform interpolation.
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Our Contribution

‚ We will present a second approximation for nice proof systems.

‚ Our candidate for natural well-behaved sequent-style rules is
semi-analytic rules (focused rules with no side preserving condition).

‚ It covers a vast variety of rules: focused rules, implication rules,
non-context sharing rules in substructural logics and so many others.
We also consider the usual modal rules K and D.

Then, we show:
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Main Result (informal.)

Theorem (Akbar Tabatabai, J.)

piq If a sufficiently strong sub-structural logic has a sequent-style proof
system only consisting of semi-analytic rules and focused axioms, it
has the Craig interpolation property. As a result, many substructural
logics and all super-intuitionistic logics, except seven of them, do not
have a sequent calculus of the mentioned form.

piiq If a sufficiently strong sub-structural logic has a terminating
sequent-style proof system only consisting of semi-analytic rules and
focused axioms, it has the uniform interpolation property.
Consequently, K4 and S4 do not have a terminating sequent calculus
of the mentioned form.

The theorem provides a uniform, proof theoretical and modular method to
prove Craig and uniform interpolation.
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Craig interpolation

We say a logic L has Craig interpolation property if for any formulas φ and
ψ if L $ φÑ ψ, then there exists formula θ such that L $ φÑ θ and
L $ θ Ñ ψ and V pθq Ď V pφq X V pψq.

Uniform interpolation

We say a logic L has the uniform interpolation property if for any formula
φ and any atomic formula p, there are two p-free formulas, the
p-pre-interpolant, @pφ and the p-post-interpolant Dpφ, such that
V pDpφq Ď V pφq and V p@pφq Ď V pφq and

piq L $ @pφÑ φ,

piiq For any p-free formula ψ if L $ ψ Ñ φ then L $ ψ Ñ @pφ,

piiiq L $ φÑ Dpφ, and

pivq For any p-free formula ψ if L $ φÑ ψ then L $ DpφÑ ψ.

Terminating calculus: there is an order on the sequents...
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Basic Sub-structural Logics

φñ φ ñ 1 0 ñ Γ ñ J,∆ Γ,K ñ ∆

Γ ñ ∆
L1

Γ, 1 ñ ∆
Γ ñ ∆

R0
Γ ñ 0,∆

Γ, φñ ∆
L^

Γ, φ^ ψ ñ ∆

Γ ñ φ,∆ Γ ñ ψ,∆
R^

Γ ñ φ^ ψ,∆

Γ, φñ ∆ Γ, ψ ñ ∆
L_

Γ, φ_ ψ ñ ∆

Γ ñ φ,∆
R_

Γ ñ φ_ ψ,∆

Γ ñ ψ,∆
R_

Γ ñ φ_ ψ,∆

Γ, φ, ψ ñ ∆
L˚

Γ, φ ˚ ψ ñ ∆

Γ ñ φ,∆ Σ ñ ψ,Λ
R˚

Γ,Σ ñ φ ˚ ψ,∆,Λ

Γ ñ φ,∆ Σ, ψ ñ Λ
L Ñ

Γ,Σ, φÑ ψ ñ ∆,Λ

Γ, φñ ψ,∆
R Ñ

Γ ñ φÑ ψ,∆
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Basic Sub-structural Logics

‚ The system consisting of the single-conclusion version of all of the
above-mentioned rules is FLe.

‚ In the multi-conclusion case define CFLe with the same rules as FLe,
this time in their full multi-conclusion version and add ` to the
language and the following rules to the system:

Γ, φñ ∆ Σ, ψ ñ Λ
L`

Γ,Σ, φ` ψ ñ ∆,Λ

Γ ñ φ, ψ,∆
R`

Γ ñ φ` ψ,∆
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Structural Rules

Weakening rules:

Γ ñ ∆
Lw

Γ, φñ ∆
Γ ñ ∆

Rw
Γ ñ φ,∆

Contraction rules:

Γ, φ, φñ ∆
Lc

Γ, φñ ∆

Γ ñ φ, φ,∆
Rc

Γ ñ φ,∆

‚ FLew “ FLe ` pLwq ` pRwq,

‚ FLec “ FLe ` pLcq,

‚ CFLew “ CFLe ` pLwq ` pRwq,

‚ CFLec “ CFLe ` pLcq ` pRcq.
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Semi-analytic rules: Single-conclusion

‚ Left semi-analytic rule:

xxΠj , ψ̄js ñ θ̄jsysyj xxΓi , φ̄ir ñ ∆iyr yi

Π1, ¨ ¨ ¨ ,Πm, Γ1, ¨ ¨ ¨ , Γn, φñ ∆1, ¨ ¨ ¨ ,∆n

where Πj , Γi and ∆i ’s are meta-multiset variables and
Ť

i ,r V pφ̄ir q Y
Ť

j ,s V pψ̄jsq Y
Ť

j ,s V pθ̄jsq Ď V pφq

‚ Right semi-analytic rule:

xxΓi , φ̄ir ñ ψ̄ir yr yi

Γ1, ¨ ¨ ¨ , Γn ñ φ
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Semi-analytic rules: Multi-conclusion

‚ Left multi-conclusion semi-analytic rule:

xxΓi , φ̄ir ñ ψ̄ir ,∆iyr yi

Γ1, ¨ ¨ ¨ , Γn, φñ ∆1, ¨ ¨ ¨ ,∆n

‚ Right multi-conclusion semi-analytic rule:

xxΓi , φ̄ir ñ ψ̄ir ,∆iyr yi

Γ1, ¨ ¨ ¨ , Γn ñ φ,∆1, ¨ ¨ ¨ ,∆n

Raheleh Jalali On the Logical Implications of Proof Forms 15 August, 2019 11 / 22



Semi-analytic modal rules

A rule is called modal semi-analytic if it has one of the following forms:

Γ ñ φ
K

lΓ ñ lφ
Γ ñ

D
lΓ ñ

with the conditions that first, Γ is a meta-multiset variable and secondly
whenever the rule pDq is present, the rule pK q must be present, as well.
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Generic Examples

Example

A generic example of a left semi-analytic rule is the following:

Γ, φ1, φ2 ñ ψ Γ, θ ñ η Π, µ1, µ2, µ3 ñ ∆

Γ,Π, αñ ∆

where

V pφ1, φ2, ψ, θ, η, µ1, µ2, µ3q Ď V pαq
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Concrete Examples

Example

The following rules are semi-analytic:

§ the usual conjunction, disjunction and implication rules for IPC;

§ all the rules in sub-structural logic FLe, weakening and contraction
rules;

§ the following rules for exponentials in linear logic:

Γ, !φ, !φñ ∆

Γ, !φñ ∆
Γ ñ ∆

Γ, !φñ ∆
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Non-examples

Example

§ The cut rule; since it does not meet the variable occurrence condition.

§ the following rule in the calculus of KC:
Γ, φñ ψ,∆

Γ ñ φÑ ψ,∆
in which ∆ should consist of negation formulas is not a
multi-conclusion semi-analytic rule, simply because the context is not
free for all possible substitutions.
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Focused axioms

Focused axioms

A sequent is called a focused axiom if it has the following form:

p1q (φñ φ)

p2q (ñ ᾱ)

p3q (β̄ ñ)

p4q (Γ, φ̄ñ ∆)

p5q (Γ ñ φ̄,∆)

where Γ and ∆ are meta-multiset variables and in p2q ´ p5q the variables in
any pair of elements in ᾱ or β̄ or φ̄ are equal.
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Focused axioms

Example

It is easy to see that the axioms given in the preliminaries are examples of
focused axioms. Here are some more examples:

 1 ñ , ñ  0

φ, φñ , ñ φ, φ

Γ, J ñ ∆ , Γ ñ ∆, K
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Main Result (formal.)

Theorem

piq If FLe Ď L, and L has a (terminating) single-conclusion sequent
calculus consisting of semi-analytic rules and focused axioms, then L
has Craig (uniform) interpolation.

piiq If IPC Ď L and L has a single-conclusion sequent calculus consisting
of semi-analytic rules and focused axioms, then L has Craig
interpolation.

piiiq If CFLe Ď L, and L has a (terminating) multi-conclusion sequent
calculus consisting of semi-analytic rules and focused axioms, then L
has Craig (uniform) interpolation.

Raheleh Jalali On the Logical Implications of Proof Forms 15 August, 2019 18 / 22



Positive Application

As a positive application we have the following:

Corollary

The logics FLe, FLew, CFLe, CFLew, CPC, and their K and KD modal
versions have the uniform interpolation property.

Proof.

The usual sequent calculi for these logics consist of some suitable variants
of semi-analytic rules and modal rules.
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Negative Applications

Corollary

None of the following logics can have a nice proof system:

§ Many substructural logics ( Ln,  L8, R, BL, ¨ ¨ ¨ );

§ Almost all super-intuitionistic logics (except at most seven of them);

§ Almost all extensions of S4 (except at most thirty seven of them);
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Thank you!
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