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Notation

We denote by letters p, q, r , p1, q1 . . . polynomial functions.
T is the class of all consistent arithmetical theories that extend Buss’s
theory S1

2 by a set of axioms that is in the complexity class P.
If ϕ is a formula with Gödel number n, then ϕ denotes a closed term n
Moreover, if ϕ(x) is a formula with one free variable x , then ϕ(ẋ)
denotes a formalization of the function ”n 7→ Gödel number of the
sentence ϕ(n)
We will denote by the formula ProofS(x , y) a natural formalization of
the relation ”x is a S-proof of y”
A formula PT (y) is then defined as

PT (y) ≡df ∃xProofT (x , y)
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Notation

With the help of the formula ProofS(x , y), we define a formula
PrS(z , y) as a natural formalization of the relation:
”There exists a S-proof of y of the length shorter than z”
Consistency of a given theory T , ConT , is then defined as the
sentence

ConT ≡df ¬PT (0 = S(0))

Finite consistency, ConT (x), is defined with the help of the formula
PrT (x , y) in the following way

ConT (x) ≡df ¬PrT (x , 0 = S(0))
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Finite versions of Gödel’s incompleteness theorems

Conjecture (CON, P. Pudlak 1986)
Let S, T ∈ T be theories such that

S + ConS = T

Then the length of S-proofs of ConT (n) cannot be bounded by any
polynomial function in n.

Connection to open problems in computational complexity theory

Theorem
Assume conjecture CON, then NEXP 6= coNEXP
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Finite versions of Gödel’s incompleteness theorems

We want to state a finite version of Gödel’s first incompleteness
theorem.
With the help of Diagonal lemma, define a formula ϕ(x) such that for
S ∈ T

S ` ϕ(x) ≡ ¬PrS(x ,PS(ϕ(ẋ))))

Lemma
Let S ∈ T be a theory and let ϕ(x) be as above. Then there exist
polynomial functions q1 and q2(n) = O(n) such that the following holds

S ` ∀x(ConS+ConS (q1(ẋ))→ ϕ(x))

S ` ∀x(ϕ(q2(ẋ))→ ConS+ConS (x))
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Finite versions of Gödel’s incompleteness theorems

Thus, we obtain for S ∈ T

S `p(n) ϕ(n)⇔ S `p(n) ConS+ConS (n)

Conjecture (Finite version of Gödel’s first incompleteness theorem,
F1GT)
Let S ∈ T and let ϕ(x) be a formula such that

S ` ϕ(x) ≡ ¬PrS(x ,PS(ϕ(ẋ))))

Then the length of S-proofs of the sentence ϕ(n) is not bounded by any
polynomial function in n.

The conjecture F1GT is equivalent to the conjecture CON
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Π2 independent sentence

Theorem (P. Pudlak, 1986)
Let T ∈ T . Then there exists a polynomial function p such that

T ` ∀xPrT (p(x),ConT (ẋ))

Let S ∈ T and, moreover, let S be Σ1-sound theory. Then

N |= ∀yPS(ϕ(ẏ))

S 0 ∀yPS(ϕ(ẏ))

Moreover, for some polynomial function p3

S ` PS(ConS+ConS (p3(ẋ)))→ PS(ϕ(ẋ))
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Π2 independent sentence

Theorem
Let S be a theory such that S ∈ T and, moreover, let S be Σ1-sound.
Then

N |= ∀xPS(ConS+ConS (ẋ))

S 0 ∀xPS(ConS+ConS (ẋ))

It is interesting to ask what causes the independence of the sentence from
the Theorem above

The sentence

∀xPS(ConS+ConS (ẋ))

is Π2 sentence

∀x∃yProofS(y ,ConS+ConS (ẋ))
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Π2 independent sentence

Π2 sentence can be interpreted as a total function defined on N.
Thus, there may be a possible analogy with fast growing functions.
The unprovability of

∀x∃yProofS(y ,ConS+ConS (ẋ))

can be caused by the lengths of proofs of the formula ConS+ConS (x).
The function in may be growing exponentially (this is in agreement
with the conjecture CON)
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Feasible finite independence

We would like to find a formula ϕ(n) such that the both formulas
¬PrT (n, ϕ(n)) and ¬PrT (n,¬ϕ(n)) have in T ∈ T proofs of the
polynomial length in n
Let ψ(x) be Rosser’s formula without the universal quantifier, that is,
define ψ(x) in the following way:

T ` ψ(x) ≡ (PrT (x , ψ(ẋ))→ ∃v ≤ xPrT (v ,¬ψ(ẋ)))

Theorem

Let T ∈ T be a theory and ψ(x) be as above. Then there exists a
polynomial function p such that for all n ∈ N

T `p(n) ¬PrT (n, ψ(n)) (1)

and
T `p(n) ¬PrT (n,¬ψ(n)) (2)
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Finite version of Löb theorem

After Kurt Gödel proved his famous theorems, L. Henkin asked an
interesting question of what is equivalent in a sufficiently strong
theory T a sentence ψ such that

T ` ψ ≡ PT (ψ)

The answer was found by M. Löb. If ψ is a sentence such that

T ` PT (ψ)→ ψ

then already

T ` ψ
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Finite version of Löb theorem

In the similar way we can ask whether on the basis of finite version of
Gödel’s first incompleteness theorem, the conjecture F1GT, what
implies

T `p(n) PrT (n,PT (ψ(n)))→ ψ(n) (1)

for some formula ψ(x) and a polynomial function p.
Here, the concept of provability is replaced by the concept of
polynomial provability or, philosophically speaking, ”feasible
provability”.
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Finite version of Löb theorem

Conjecture (Finite version of Löb’s theorem, FL)
Let T ∈ T be a theory and ψ(x) a formula. If there exists polynomial
function p such that for every n

T `p(n) PrT (n,PT (ψ(n)))→ ψ(n)

then there exists a polynomial function q such that for all sufficiently large
n

T `q(n) ψ(n)
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Finite version of Löb theorem

Conjecture (Uniform version of finite Löb theorem, UFL)
Let T ∈ T be a theory and ψ(x) a formula. Then for every polynomial
function p there exists a polynomial function q such that

N |= ∃y∀x ≥ y(PrT (p(ẋ),PrT (ẋ ,PT (ψ(ẋ)))→ ψ(ẋ))→ PrT (q(ẋ), ψ(ẋ)))

Lemma
The conjecture FL implies the conjecture CON
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Classical vs. polynomial provability

These conjectures indicate that there is a very close relationship between
classical provability and polynomial or feasible provability. We can show
these similarities in the following table.

STANDARD PROVABILITY FEASIBLE PROVABILITY
Fast growing functions Complexity associated with a proof
Gödel’s incompleteness theorems Finite incompleteness theorems
Löb’s theorem Finite version of Löb’s theorem
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