Generalised Miller Forcing May Collapse Cardinals

Heike Mildenberger and Saharon Shelah

Logic Colloquium 2019 Prague August 11–16, 2019

A family $\mathscr{A} \subseteq [\kappa]^{\kappa}$ is called a κ -almost disjoint family if for $A \neq B \in \mathscr{A}$, $|A \cap B| < \kappa$. A κ -almost disjoint family of size at least κ that is maximal is called a κ -mad family.

Observation

If $2^{<\kappa} = \kappa$, there is a κ -mad family $\mathscr{A} \subseteq [\kappa]^{\kappa}$ of size 2^{κ} .

Conditions are subsets of κ of size κ . Stronger conditions are subsets. The separative quotient is $([\kappa]^{\kappa}/=^*, \subseteq^*)$. Here, $A \subseteq^* B$ if $|A \setminus B| < \kappa$, and $A =^* B$ if $A \subseteq^* B$ and $B \subseteq^* A$.

Observation

If $([\kappa]^{\kappa}, \subseteq)$ collapses 2^{κ} to ω , then there is a κ -mad family \mathscr{A} of size 2^{κ} .

Theorem (Theorem 0.5 in [She07] Sh:861 from 2007)

- (1) If there is a κ-ad subset of [κ]^κ of size χ, and if
 ℵ₀ < cf(κ) = κ or if ℵ₀ < cf(κ) < 2^{cf(κ)} ≤ κ, then the forcing ([κ]^κ, ⊆) collapses χ to ℵ₀.
- (2) Let κ be uncountable. If there is a κ -ad subset of $[\kappa]^{\kappa}$ of size χ , and of $\aleph_0 = cf(\kappa)$ then the forcing $([\kappa]^{\kappa}, \subseteq)$ collapses χ to \aleph_1 .

 \mathbb{Q}_{κ} is the following version of κ -Miller forcing: Conditions are trees $T \subseteq {}^{\kappa>}\kappa$ that are κ superperfect: for each $s \in T$ there is $s \trianglelefteq t$ such that t is a κ -splitting node of T (short $t \in \operatorname{spl}(T)$). A node $t \in T$ is called a κ -splitting node if

$$\operatorname{osucc}_p(t) = \{i < \kappa : t \land \langle i \rangle \in T\}$$

has size κ . We furthermore require that the limit of an increasing in the tree order sequence of length less than κ of κ -splitting nodes is a κ -splitting node if it has length less than κ .

For $p,q\in\mathbb{Q}_{\kappa}$ we write $q\leq_{\mathbb{Q}_{\kappa}}p$ if $q\subseteq p$. So subtrees are stronger conditions.

Suppose that $[\kappa]^{\kappa}$ collapses 2^{κ} to ω . Then there is a $[\kappa]^{\kappa}$ -name $\tau: \aleph_0 \to 2^{\kappa}$ for a surjection, and there is a labelled tree $\mathcal{T} = \langle (a_n, n_n, \varrho_n) : \eta \in {}^{\omega >}(2^{\kappa}) \rangle$ with the following properties (a) $a_{\langle\rangle} = \kappa$ and for any $\eta \in {}^{\omega >}(2^{\kappa})$, $a_{\eta} \in [\kappa]^{\kappa}$. (b) $\eta_1 \triangleleft \eta_2$ implies $a_{n_1} \supseteq a_{n_2}$. (c) $n_n \in [\lg(\eta) + 1, \omega).$ (d) If $a \in [\kappa]^{\kappa}$ then there is some $\eta \in {}^{\omega >}(2^{\kappa})$ such that $a \supseteq a_n$. (e) If $\eta^{\hat{}}\langle\beta\rangle \in T$ then $a_{\eta^{\hat{}}\langle\beta\rangle}$ forces $\tau \upharpoonright n_{\eta} = \varrho_{\eta^{\hat{}}\langle\beta\rangle}$ for some $\varrho_{n^{\hat{}}(\beta)} \in {}^{n_{\eta}}(2^{\kappa})$, such that the $\varrho_{n^{\hat{}}(\beta)}$, $\beta \in 2^{\kappa}$, are pairwise different. Hence for any $\eta \in {}^{\omega >}(2^{\kappa})$, the family $\{a_{\eta \land \langle \alpha \rangle} : \alpha < 2^{\kappa}\}$ is a κ -ad family in $[a_n]^{\kappa}$.

Let $\langle \nu_{\alpha} : \alpha < \kappa^{<\kappa} \rangle$ be an injective enumeration of $\kappa^{<\kappa}$ such that

$$\nu_{\alpha} \triangleleft \nu_{\beta} \to \alpha < \beta.$$

Let $\langle p_{\alpha}, \nu_{\alpha}, c_{\alpha} : \alpha < \kappa^{<\kappa} \rangle$ be a sequence such that for any $\alpha \leq \lambda$ the following holds:

(a) $p_0 \in \mathbb{Q}_{\kappa}$. (b1) If $\alpha = \beta + 1 < \kappa^{<\kappa}$ and $\nu_{\beta} \in sp(p_{\beta})$, then $c_{\beta} \in [\operatorname{succ}_{p_{\beta}}(\nu_{\beta})]^{\kappa}$ and $p_{\alpha} = p_{\beta}(\nu_{\beta}, c_{\beta}) := \bigcup \{p_{\beta}^{\langle \nu_{\beta} \setminus i \rangle \rangle} : i \in c_{\beta} \}$ $\cup \bigcup \{p_{\beta}^{\langle \eta \rangle} : \eta \not \leq \nu_{\beta} \land \nu_{\beta} \not\leq \eta \}.$

(b2) If
$$\alpha = \beta + 1 < \kappa^{<\kappa}$$
 and $\nu_{\beta} \notin \operatorname{spl}(p_{\beta})$ then $p_{\alpha} = p_{\beta}$.
(c) $p_{\alpha} = \bigcap \{p_{\beta} : \beta < \alpha\}$ for limit $\alpha \le \kappa^{<\kappa}$.
Then for any $\lambda \le \kappa^{<\kappa}$, $p_{\lambda} \in \mathbb{Q}^{2}_{\kappa}$ and $\forall \beta < \lambda$, $p_{\beta} \le \mathbb{Q}^{2}_{\kappa} p_{\lambda}$.

By picture. Instead of choosing only $c_{\beta} \in [\operatorname{succ}_{p_{\beta}}(\nu_{\beta})]^{\kappa}$ we choose for each $\nu_{\beta} i$ one higher splitting point not necessarily the shortest one.

Why is the intersection still a Miller condition? At each splitting point in the sequence that stays, the successor set is shrunken at most once.

We assume $[\kappa]^{\kappa}$ collapses 2^{κ} to ω . Let $\underline{\tau}$ and $\mathcal{T} = \langle (a_{\eta}, n_{\eta}, \varrho) : \eta \in {}^{\omega >}(2^{\kappa}) \rangle$ be as in Lemma. Now let $Q_{\mathscr{T}}$ be the set of \mathbb{Q}_{κ} -trees p such that for every $\nu \in \operatorname{spl}(p)$ there is $\eta_{p,\nu} = \eta_{\nu} \in {}^{\omega >}(2^{\kappa})$ such that

$$\operatorname{osucc}_p(\nu) = \{ \varepsilon \in \kappa : \nu \hat{\langle \varepsilon \rangle} \in p \} = a_{\eta_{\nu}}.$$

We assume that $[\kappa]^{\kappa}$ collapses 2^{κ} to ω and the \mathcal{T} is as above. For $T \in Q_{\mathscr{T}}$ and a splitting node ν of T we set $\varrho_{T,\nu} := \varrho_{\eta_{T,\nu}} \in {}^{\omega>}(2^{\kappa})$. Recall $\eta_{T,\nu}$ is the translation ot \mathscr{T} , and ϱ is an initial segment of a collapsing function of \mathcal{T} .

We assume that $[\kappa]^{\kappa}$ collapses 2^{κ} to ω and the \mathcal{T} is as above. For $T \in Q_{\mathscr{T}}$ and a splitting node ν of T we set $\varrho_{T,\nu} := \varrho_{\eta_{T,\nu}} \in {}^{\omega>}(2^{\kappa})$. Recall $\eta_{T,\nu}$ is the translation ot \mathscr{T} , and ϱ is an initial segment of a collapsing function of \mathcal{T} .

Definition

We assume that $[\kappa]^{\kappa}$ collapses 2^{κ} to ω . Let $n \in \omega$.

$$D_n = \{ p \in Q_{\mathscr{T}} : (\forall \nu \in \operatorname{spl}(p))(\lg(\varrho_{p,\nu}) > n) \}.$$

We assume that $[\kappa]^{\kappa}$ collapses 2^{κ} to ω , $cf(\kappa) > \omega$ and $2^{(\kappa^{<\kappa})} = 2^{\kappa}$. Let $\langle T_{\alpha} : \alpha < 2^{\kappa} \rangle$ enumerate \mathbb{Q}_{κ} such that each condition appears 2^{κ} times. There is $\langle (p_{\alpha}, n_{\alpha}, \bar{\gamma}_{\alpha}) : \alpha < 2^{\kappa} \rangle$ such that (a) $n_{\alpha} < \omega$. (b) $p_{\alpha} \in D_{n_{\alpha}}$ and $p_{\alpha} > T_{\alpha}$. (c) If $\beta < \alpha$ and $n_{\beta} \ge n_{\alpha}$ then $p_{\beta} \perp p_{\alpha}$. (d) $\bar{\gamma}_{\alpha} = \langle \gamma_{\alpha,\nu} : \nu \in \operatorname{spl}(p_{\alpha}) \rangle.$ (e) $(\forall \nu \in \operatorname{spl}(p_{\alpha}))(a_{\eta_{p_{\alpha},\nu}} \Vdash_{[\kappa] \leq \kappa} \gamma_{\alpha,\nu} \in \operatorname{range}(\varrho_{p_{\alpha},\nu})).$ (f) $\gamma_{\alpha \nu} \in 2^{\kappa} \setminus W_{\leq \alpha, \nu}$ with $W_{<\alpha,\nu} = \bigcup \{ \operatorname{range}(\varrho_{p_{\beta},\nu}) : \beta < \alpha, \nu \in \operatorname{spl}(p_{\beta}) \}.$

We assume that $[\kappa]^{\kappa}$ collapses 2^{κ} to ω , $cf(\kappa) > \omega$ and $2^{(2^{<\kappa})} = 2^{\kappa}$. Let $\langle T_{\alpha} : \alpha < 2^{\kappa} \rangle$ enumerate all Miller trees that such each tree appears 2^{κ} times. If $\langle (p_{\alpha}, n_{\alpha}) : \alpha < 2^{\kappa} \rangle$ are such that

Let B be a Boolean algebra. We write $B^+ = B \setminus \{0\}$. A subset $D \subseteq B^+$ is called *dense* if $(\forall b \in B^+)(\exists d \in D)(d \leq b)$.

Lemma

[Jec03, Lemma 26.7]. Let (Q, <) be a notion of forcing such that $|Q| = \lambda > \aleph_0$ and such that Q collapses λ onto \aleph_0 , i.e.,

$$0_Q \Vdash_Q |\check{\lambda}| = \aleph_0.$$

Then $\operatorname{RO}(Q) = Levy(\aleph_0, \lambda)$.

If $[\kappa]^{\kappa}$ collapses 2^{κ} to \aleph_0 , then $[\kappa]^{\kappa}$ is equivalent of $Levy(\aleph_0, 2^{\kappa})$. $[\kappa]^{\kappa}$ has size 2^{κ} . Hence Lemma 13 yields $RO([\kappa]^{\kappa}) = Levy(\aleph_0, 2^{\kappa})$.

Proposition

If $[\kappa]^{\kappa}$ collapses 2^{κ} to \aleph_0 , $cf(\kappa) > \aleph$ and and $2^{(\kappa^{<\kappa})} = 2^{\kappa}$ then \mathbb{Q}_{κ} is equivalent to $Levy(\aleph_0, 2^{\kappa})$.

Suppose that forcing with $[\kappa]^{\kappa}$ does not collapse 2^{κ} (for regular κ , this is equivalent to not having a κ -ad family of size 2^{κ} in $[\kappa]^{\kappa}$.) Or suppose that there is such a large ad family, but the density of our Miller forcing is $> 2^{\kappa}$.

- Then our proofs do not work.
- Theorem (Theorem 5.4, 5.6, Baumgartner, Almost disjoint sets [Bau76])

Assume GCH in the ground model an force with

$$P(\nu, \varrho) = \{ f \colon \varrho \to 2 \: : \: |\operatorname{dom}(f)| < \nu \}$$

ordered by extension. If $\aleph_0 \leq \nu < \kappa = cf(\kappa)$ and $\varrho \geq \kappa^{++}$, then in V[G], $2^{\kappa} \geq \kappa^{++}$ and there is no κ -ad family in $[\kappa]^{\kappa}$ of size κ^{++} .

Friedman, Zdomskyy [FZ10]. Brendle, Brooke-Taylor, Friedman, Montoya [BBTFM18]

Definition

Let κ be a regular cardinal such that $\kappa^{<\kappa} = \kappa$. Conditions in the forcing order $\mathbb{Q}_{\kappa}^{\text{club}}$ are trees $p \subseteq {}^{\kappa>}\kappa$ with the following additional properties:

- (Club filter superperfectness) For any s ∈ p there is an extension t ≥ s in p such that {α ∈ κ : t[^]⟨α⟩ ∈ p} is club in κ. We require that each node has either only one direct successor or splits into a club.
- (2) (Closure of splitting) For each increasing sequence of length $< \kappa$ of splitting nodes, the union of the nodes on the sequence is a splitting node of p as well.

The forcing order is q is stronger than p iff $q \subseteq p$. We remark that clauses (1) and (2) imply:

(3) For every increasing sequence (t_i : i < λ) of length λ < κ of nodes t_i ∈ p ∈ Q^{club}_κ we have that the limit of the sequence U{t_i : i < λ} is also a node in p.</p>

Assume that $\kappa^{<\kappa}$ is enumerated by $\langle \eta_{\alpha} : \alpha < \kappa \rangle$.

Definition

We define \leq_{α} slightly differently from Friedman and Zdomskyy [FZ10, Def. 2.2], so that the premise $\kappa^{<\kappa} = \kappa$ suffices. For $\alpha < \kappa$ we let

$$\operatorname{spl}_{\alpha}(p) = \left\{ t \in \operatorname{spl}(p) \, : \, \operatorname{otp}(\left\{ s \subsetneq t \, : \, s \in \operatorname{spl}(p) \right\}) < \alpha \right\}$$

and

$$cl_{\alpha}(p) := \{ s \in p : \exists t \in spl_{\alpha}(p) s \subseteq t \land (\exists \beta < \alpha)(s = \eta_{\beta}) \}.$$

We let $p \leq_{\alpha} q$ if $p \leq q$ and $cl_{\alpha}(p) = cl_{\alpha}(q)$.

Note $|\operatorname{cl}_{\alpha}(p)| \leq |\alpha| + \aleph_0 < \kappa$.

Lemma

Then $(\mathbb{Q}^{\text{club}}_{\kappa}, (\leq_{\alpha})_{\alpha < \kappa})$ fulfils the fusion lemma.

However, in iterations the diamond or Shelah's Dl is used in limit steps.

Let \mathbb{Q} be a forcing order and let λ be a cardinal. $Ax(\mathbb{Q}, < \lambda)$ is the statement For any set \mathcal{D} of size $<\lambda$ of dense sets in \mathbb{Q} there is a filter $G \subseteq \mathbb{Q}$ such that $(\forall D \in \mathcal{D})(G \cap D \neq \emptyset)$.

Theorem

Suppose that $\kappa > \omega$, $\kappa^{<\kappa} = \kappa$.

- (1) $Ax(\mathbb{Q}_{\kappa}^{club}, < \kappa^{++})$ and $2^{\kappa} = \kappa^{++}$ is consistent relative to ZFC.
- (2) Ax($\mathbb{Q}_{\kappa}^{\text{club}}$, $< \kappa^{++}$) implies that forcing with $\mathbb{Q}_{\kappa}^{\text{club}}$ does not collapse κ^{++} .

Theorem

Suppose

(a)
$$\kappa = \kappa^{<\kappa} > \omega$$
 and

(b) for every set $F \subseteq {}^{\kappa}\kappa$ of size $< 2^{\kappa}$ there is an eventually different κ real g, i.e., an $g \in {}^{\kappa}\kappa$ such that $(\forall f \in F)(\exists \alpha_0 \in \kappa)(\forall \alpha \ge \alpha_0)(f(\alpha) \ne g(\alpha)).$

Then $\mathbb{Q}_{\kappa}^{club}$ and also Sacks forcing collapses 2^{κ} to \mathfrak{b}_{κ} .

Let $\kappa < \lambda$ and let $\overline{\theta}$ be a sequence of ordinals. We write $\oplus_{\kappa,\lambda,\overline{\theta}}$ if the following holds:

- (a) κ is strongly inaccessible.
- (b) $\bar{\theta} = \langle \theta_{\varepsilon} : \varepsilon < \kappa \rangle$ is an increasing sequence of regular cardinals in $(2^{|\varepsilon|}, \kappa)$.

(c) $2^{\kappa} = \lambda$.

(d) $\operatorname{tcf}(\prod_{\varepsilon < \kappa} \theta_{\varepsilon}, \leq_{J_{\kappa}^{\mathrm{bd}}}) = \lambda.$

Theorem

 Assume that κ is a strongly inaccessible cardinal, and that λ = λ^κ = cf(λ). Then there is ℙ, a (< κ)-complete κ⁺-cc notion of forcing such that in ℙ forces: There is θ with ⊕_{κ,λ,θ}.

 If ⊕_{κ,λ,θ} then condition (b) of the previous Theorem holds the forcing ℚ^{club}_κ collapses 2^κ to 𝔥_κ = κ⁺.

Theorem

If $cf(\kappa) = \kappa = \lambda^+$ and $\kappa \ge \theta^{++}$, and $\kappa^{\theta} > \kappa$, then $\mathbb{Q}_{\kappa}^{club}$ collapses κ^{θ} to κ .

Work is from preprints [MS18] [MS19]

By [Sh:351] for $\lambda^+ = \kappa$ there is a sequence \bar{C} and there are T, S_i , $i < \lambda$ with the following properties:

(1)
$$T = \{ \alpha \in \kappa : \operatorname{cf}(\alpha) \leq \theta \},\$$

(2) T is the union of stationary sets S_i , $i < \lambda$, that have the following square property:

(3) There is
$$\overline{C}^i = \langle C^i_\alpha : \alpha \in S_i \rangle$$
,

(4) Cⁱ_α is a closed subset of α, not necessarily cofinal in α, however, if α is a limit ordinal, then Cⁱ_α is cofinal in α, Cⁱ_α ⊆ T ∩ α and otp(Cⁱ_α) ≤ θ,

(5) for $\alpha \in S_i$, for any $\beta \in C^i_{\alpha}$, then $\beta \in S_i$ and $C^i_{\beta} = C^i_{\alpha} \cap \beta$.

References |

- James Baumgartner, Almost-disjoint sets, the dense-set problem, and the partition calculus, Ann. Math. Logic 9 (1976), 401–439.
- Jörg Brendle, Andrew Brooke-Taylor, Sy-David Friedman, and Diana Carolina Montoya, *Cichoń's diagram for uncountable cardinals*, Israel J. Math. **225** (2018), no. 2, 959–1010. MR 3805673
- Sy-David Friedman and Lyubomyr Zdomskyy, Measurable cardinals and the cofinality of the symmetric group, Fund. Math. 207 (2010), no. 2, 101–122. MR 2586006
- Thomas Jech, *Set theory. the third millenium edition, revised and expanded*, Springer, 2003.

- Heike Mildenberger and Saharon Shelah, A Version of κ-Miller Forcing, Preprint (2018), https://arxiv.org/abs/1802.07986.
- Generalised Miller Forcing May Collapse Cardinals, Preprint (2019).
- Saharon Shelah, Power set modulo small, the singular of uncountable cofinality, Journal of Symbolic Logic 72 (2007), 226–242, arxiv:math.LO/0612243.

Thank you!