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Hindman’s Theorem (HT): For every coloring of N with finitely
many colors, there is an infinite S ⊆ N s.t. every nonempty sum of
distinct elements of S has the same color.

HT is a Π1
2 principle, of the form

∀X [Φ(X) → ∃Y Ψ(X ,Y )]

with Φ and Ψ arithmetic.

We can think of such a principle as a problem.

An instance of such a problem is an X s.t. Φ(X) holds.

A solution to this instance is a Y s.t. Ψ(X ,Y ) holds.

This is a natural context for computability-theoretic analysis.
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We can also employ the perspective of reverse mathematics:

RCA0 is the usual weak base system of reverse mathematics,
corresponding roughly to computable mathematics.

All implications below are over RCA0.

ACA0 corresponds roughly to arithmetic mathematics.

ACA0 proves that for every X , the jump X ′ exists, and hence that
so does each finite iterate X (n).

ACA+
0 adds to ACA0 that for every X , the ωth jump X (ω) exists.
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Thm (Blass, Hirst, and Simpson).

1. Every computable instance of HT has an ∅(ω+1)-computable
solution.

2. There is a computable instance of HT all of whose solutions
compute ∅′.

3. ACA+
0 → HT.

4. HT→ ACA0.

Open Question. Does HT hold arithmetically? Does ACA0 → HT?
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Iterated Hindman’s Theorem (IHT): For instances c0,c1, . . . of HT,
there are x0 < x1 < · · · s.t. each {xi : i > n} is a solution to cn.

The results of Blass, Hirst, and Simpson also hold for IHT.

One way to prove (I)HT is to use idempotent ultrafilters.

Let A− k = {n : n + k ∈ A}.

The set of ultrafilters on N is a semigroup under the operation

U ⊕ V = {A : {k : A− k ∈ U} ∈ V}.

U is idempotent if U ⊕ U = U .

Hirst showed that IHT is equivalent to the existence of certain
countable approximations to idempotent ultrafilters.
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Montalbán and Shore developed a framework to expand the
language of second-order arithmetic to talk about ultrafilters.

They showed that ACA0 plus the existence of an idempotent
ultrafilter implies IHT.

They also showed that the existence of an idempotent ultrafilter
is conservative over ACA0 + IHT, ACA+

0 , and several other systems.

Kreuzer also showed the Π1
2-conservativity of the existence of an

idempotent ultrafilter over ACA0 + IHT and ACA+
0 by working in

higher-order reverse mathematics.

Open Question. Is the existence of an idempotent ultrafilter
conservative over ACA0?
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HT=n is HT for sums of exactly n many elements.

[X ]n is the set of n-element subsets of X .

RTn: For every coloring of [N]n with finitely many colors, there is an
infinite H ⊆ N s.t. every element of [H]n has the same color.

It is easy to see that RTn → HT=n.

Thm (Seetapun). RT2 9 ACA0.

So HT=2 is strictly weaker than ACA0.

Question (Dzhafarov, Jockusch, Solomon, and Westrick). Is HT=2

computably true? Is it provable in RCA0?
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Thm (Csima, Dzhafarov, Hirschfeldt, Jockusch, Solomon, and
Westrick). HT=2 is not computably true, and hence is not
provable in RCA0.

Building a computable instance c : N→ 2 of HT=2 with no
computable solution:

Let X + s = {k + s : k ∈ X} and let Wi be the ith c.e. set.

Wait for a sufficiently large finite Fi ⊆Wi .

Ensure that Fi + s is not monochromatic for all sufficiently large s.

Problem: interactions between the strategies for different i’s.



Thm (Csima, Dzhafarov, Hirschfeldt, Jockusch, Solomon, and
Westrick). HT=2 is not computably true, and hence is not
provable in RCA0.

Building a computable instance c : N→ 2 of HT=2 with no
computable solution:

Let X + s = {k + s : k ∈ X} and let Wi be the ith c.e. set.

Wait for a sufficiently large finite Fi ⊆Wi .

Ensure that Fi + s is not monochromatic for all sufficiently large s.

Problem: interactions between the strategies for different i’s.



Thm (Csima, Dzhafarov, Hirschfeldt, Jockusch, Solomon, and
Westrick). HT=2 is not computably true, and hence is not
provable in RCA0.

Building a computable instance c : N→ 2 of HT=2 with no
computable solution:

Let X + s = {k + s : k ∈ X} and let Wi be the ith c.e. set.

Wait for a sufficiently large finite Fi ⊆Wi .

Ensure that Fi + s is not monochromatic for all sufficiently large s.

Problem: interactions between the strategies for different i’s.



Thm (Csima, Dzhafarov, Hirschfeldt, Jockusch, Solomon, and
Westrick). HT=2 is not computably true, and hence is not
provable in RCA0.

Building a computable instance c : N→ 2 of HT=2 with no
computable solution:

Let X + s = {k + s : k ∈ X} and let Wi be the ith c.e. set.

Wait for a sufficiently large finite Fi ⊆Wi .

Ensure that Fi + s is not monochromatic for all sufficiently large s.

Problem: interactions between the strategies for different i’s.



Thm (Csima, Dzhafarov, Hirschfeldt, Jockusch, Solomon, and
Westrick). HT=2 is not computably true, and hence is not
provable in RCA0.

Building a computable instance c : N→ 2 of HT=2 with no
computable solution:

Let X + s = {k + s : k ∈ X} and let Wi be the ith c.e. set.

Wait for a sufficiently large finite Fi ⊆Wi .

Ensure that Fi + s is not monochromatic for all sufficiently large s.

Problem: interactions between the strategies for different i’s.



Think of the c(n)’s as mutually independent random variables,
with values 0 and 1 each having probability 1

2 .

If Fi is large then the event that Fi + s is monochromatic for c has
low probability.

These events for Fi + s and Fj + t are independent when s and t
are sufficiently far apart.

So we need to know that when events with “sufficiently small”
probability are “sufficiently independent” then it is possible to
avoid them all effectively.
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To do this, we use the Computable Lovász Local Lemma of
Rumyantsev and Shen, in the form of the following corollary:

For each q ∈ (0, 1) there is an M s.t. the following holds.

Let E0, E1, . . . be a computable sequence of finite sets, each of
size at least M.

Suppose that for each m > M and n, there are at most 2qm

many i s.t. |Ei | = m and n ∈ Ei , and that we can compute the set
of all such i given m and n.

Then there is a computable c : N→ 2 s.t. for each i the set Ei is
not monochromatic for c.
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Building a computable instance c : N→ 2 of HT=2 with no
computable solution:

Wait for a sufficiently large finite Fi ⊆Wi .

Use the computable LLL to ensure that Fi + s is not
monochromatic for all sufficiently large s.

We can work with W ∅′
i instead, to obtain a c with to Σ0

2 solution.

The sizes of the Fi can be computably bounded, so we can also
ensure that solutions to c are effectively immune relative to ∅′.

Thm (Csima, Dzhafarov, Hirschfeldt, Jockusch, Solomon, and
Westrick). There is a computable instance of HT=2 s.t. every
solution is diagonally noncomputable (DNC) relative to ∅′.
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2-DNC is the reverse-mathematical principle corresponding to
diagonal noncomputability relative to the jump.

RRT2
2: If c : [N]2 → N is s.t. |c−1(i)| 6 2 for all i, there there is an

infinite R ⊆ N s.t. c is injective on [R]2.

Thm (J. Miller). RRT2
2 ↔ 2-DNC.

Thm (Csima, Dzhafarov, Hirschfeldt, Jockusch, Solomon, and
Westrick). HT=2 → 2-DNC.

Open Question. Does 2-DNC→ HT=2?

Open Question. Does HT=2 → RT2?
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An instance of HT62 or RT2 might have no solution containing a
given n.

However, every instance of HT=2 does have such a solution:

HT=2(n): every instance of HT=2 has a solution containing n.

HT=2(0) is basically HT62.

We can pass between HT=2(0) and HT=2(n) by translating the
coloring by 2n and then translating the solution back by n.

Thus every HT=2(n) is equivalent to HT62.
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HT is equivalent to the Finite Union Theorem (FUT): For every
coloring of the finite subsets of N with finitely many colors, there
are nonempty finite sets F0 < F1 < F2 < · · · such that all
nonempty finite unions of the Fi’s have the same color.

Hirst considered the following variation, motivated by a lemma
of Hilbert:

HIL: For every coloring of the finite subsets of N with finitely many
colors, there are distinct nonempty finite sets F0, F1, F2, . . . such
that all nonempty finite unions of the Fi’s have the same color.

Thm (Hirst). HIL↔ RT1.

Thus HIL is computably true (though not quite provable in RCA0).
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Let P be a version of HT.

Pk is P restricted to k-colorings.

Let λ(n) be the least exponent of n base 2, and let µ(n) be the
greatest exponent of n base 2.

S ⊆ N satisfies apartness if for all m < n in S, we have µ(m) < λ(n).

P with apartness is P with the extra condition that the solution
satisfy apartness.

Thinking of HT as FUT makes apartness natural.

HTk and HTk with apartness are equivalent to FUTk and hence to
each other.
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Thm (Carlucci, Kołodzieczyk, Lepore, and Zdanowski).
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k with apartness is equivalent to FUT6n

k , and also for =n.
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k with apartness.

3. HT62
2 with apartness implies ACA0.

4. HT62
4 implies ACA0.

5. For n > 3, HT=n
k with apartness is equivalent to ACA0.

Thm (Dzhafarov, Jockusch, Solomon, and Westrick).
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3 implies ACA0.

2. HT62
2 implies the stable version of RT2

2 over BΣ0
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