SOME RECENT NEWS ABOUT TRUTH THEORIES

Ali Enayat

University of Gothenburg

LOGIC COLLOQUIUM 2019, PRAGUE SPECIAL SESSION ON REFLECTION PRINCIPLES AND MODAL LOGIC

August 15, 2019

- A base theory B is a first order theory with "enough coding for handling finite sequences of objects", for example:
 (1) B = PA (Peano arithmetic).
 (2) B = ACA₀ (the predicative extension of PA).
 - (3) B = ZF (Zermelo-Fraenkel set theory).
 - (4) B = GB (the predicative extension of ZF).
- A truth theory over a base theory B is a theory of the form:

 $\mathsf{P}[\mathsf{B}] = \mathsf{B} \cup \mathsf{P},$

where P (for prawda = truth in Polish) is a set of "truth axioms" formulated in the language $\mathcal{L}_B \cup \{T(x)\}$, where the intended interpretation of T(x) is "x is the Gödel number of a true \mathcal{L}_B -sentence".

 \bullet We will refer to $\mathcal{L}_B \cup \{T\}$ as "the extended language".

- CT⁻ consists of the following axioms, where s and t range over closed terms of \mathcal{L}_{B} ; and ϕ and ψ range over formulae of \mathcal{L}_{B} .
- CT1 $T(s = t) \leftrightarrow (s^{\circ} = t^{\circ}).$ CT2 $\{T(R(s_1, ..., s_n)) \leftrightarrow R(s_1^{\circ}, ..., s_n^{\circ}) : R \in \mathcal{L}_B\}.$ CT3 $T(\neg \phi) \leftrightarrow \neg T(\phi).$ CT4 $T(\phi \lor \psi) \leftrightarrow T(\phi) \lor T(\psi).$ CT5 $T(\exists v \phi) \leftrightarrow \exists x T(\phi(\underline{x})).$ CT6 $(\overline{s}^{\circ} = \overline{t}^{\circ} \to T(\phi(\overline{s})) \leftrightarrow T(\phi(\overline{t}))).$ • CT⁻ \vdash TB⁻, where TB⁻ consist of Tarski bi-conditionals

 $\mathsf{T}(\phi) \leftrightarrow \phi$

Friedman-Sheard untyped truth theory

 FS^- consists of the following axioms, where *s* and *t* range over closed terms of \mathcal{L}_B ; and ϕ and ψ range over formulae of $\mathcal{L}_B \cup \{T(x)\}$.

FS1
$$T(s = t) \leftrightarrow (s^{\circ} = t^{\circ}).$$

FS2 $\{T(R(s_1, ..., s_n)) \leftrightarrow R(s_1^{\circ}, ..., s_n^{\circ}) : R \in \mathcal{L}_B\}.$
FS3 $T(\neg \phi) \leftrightarrow \neg T(\phi).$
FS4 $T(\phi \lor \psi) \leftrightarrow T(\phi) \lor T(\psi).$
FS5 $T(\exists v \phi) \leftrightarrow \exists x T(\phi(\underline{x})).$
FS6 $(\overline{s}^{\circ} = \overline{t}^{\circ} \to T(\phi(\overline{s})) \leftrightarrow T(\phi(\overline{t}))).$

 FS^- is equipped with the following additional derivation rules:

$$rac{\phi}{T(\phi)}$$
 (NEC) $rac{T(\phi)}{\phi}$ (CONEC)

Kripke-Feferman untyped truth theory

 KF⁻ consists of the following axioms, where s and t range over closed terms of L_B; and φ and ψ range over formulae of L_B ∪ {T(x)}.

$$\begin{array}{l} \mathsf{KF1} \quad T(s=t) \leftrightarrow (s^{\circ}=t^{\circ}). \\ \mathsf{KF2} \quad T(s\neq t) \leftrightarrow (s^{\circ}\neq t^{\circ}). \\ \mathsf{KF3} \quad \{T(R(s_{1},\ldots,s_{n})) \leftrightarrow R(s_{1}^{\circ},\ldots,s_{n}^{\circ}): R\in\mathcal{L}_{\mathsf{B}}\}. \\ \mathsf{KF4} \quad \{T(\neg R(s_{1},\ldots,s_{n})) \leftrightarrow \neg R(s_{1}^{\circ},\ldots,s_{n}^{\circ}): R\in\mathcal{L}_{\mathsf{B}}\}. \\ \mathsf{KF5} \quad T(\neg \neg \phi) \leftrightarrow T(\phi). \\ \mathsf{KF6} \quad T(\phi \lor \psi) \leftrightarrow T(\phi) \lor T(\psi). \\ \mathsf{KF7} \quad T(\neg (\phi \lor \psi)) \leftrightarrow T(\neg \phi) \land T(\neg \psi). \\ \mathsf{KF8} \quad T(\exists y \ \phi(y)) \leftrightarrow \exists x T(\phi(\underline{x})). \\ \mathsf{KF9} \quad T(\neg \exists y \ \phi(y)) \leftrightarrow \forall x T(\neg \phi(\underline{x})). \\ \mathsf{KF10} \quad \left(\overline{s}^{\circ} = \overline{t}^{\circ} \rightarrow T(\phi(\overline{s})) \leftrightarrow T(\phi(\overline{t}))\right). \\ \mathsf{KF11} \quad \left(t^{\circ} = \phi \rightarrow T(T(t)) \leftrightarrow T(\phi)\right). \\ \mathsf{KF12} \quad \left(t^{\circ} = \phi \rightarrow T(\neg T(t)) \leftrightarrow T(\neg \phi)\right). \end{array}$$

- Given a truth theory P⁻, let P be the result of strengthening P⁻ with all instances of induction in the extended language.
- (Tarski, 1935) CT[PA] proves Con(PA), but TB[PA] is conservative over PA.
- (Feferman, 1964) The arithmetical consequences of CT[PA] coincide with the arithmetical consequences of ACA.
- (Halbach, 2010) The arithmetical consequences of FS coincide with the arithmetical consequences of $RA_{<\omega}$.
- (Feferman 1985, Cantini 1987) The arithmetical consequences of KF coincide with the arithmetical consequences of RA_{<ε0}.

- Let CT_n be the fragment of CT[PA] in which the scheme of induction for formulae in the extended language is restricted to Σ_n formulae.
- $CT_1 \vdash GR_{PA}$, where GR_{PA} is the sentence in the extended language expressing: "all theorems of PA are true". Therefore $CT_1 \vdash Con(PA)$, since $CT^- \vdash \neg T(0 = 1)$.
- What about CT₀? In a 1986 paper, Kotlarski claimed that CT₀ proves GR_{PA} , but a serious gap was found in his proof outline around 2012 by Heck and Visser.
- Łełyk and Wcisło (2017) proved that CT₀ and GR_{PA} have the same arithmetic consequences.
- Łełyk (PhD thesis, 2018) confirmed Kotlarski's hunch by verifying that GR_{PA} is provable in CT₀.

- Krajewski-Kotlarski-Lachlan (1981) showed that CT⁻[PA] + IC is conservative over PA, where IC is the axiom of Induction Correctness (also known as Internal Induction) asserting, as one sentence, that each instance of arithmetical induction is true.
- We now know that, more generally, CT⁻[B] is conservative over B for every base theory B, and that if τ is a "scheme template" such that B proves every instance of τ, then: CT⁻[B] + "every instance of τ is true" is conservative over B.
- These general results were established in the joint work of Visser and me (2014), using elementary model-theoretic ideas, and by Leigh (2015), using proof-theoretic machinery.

• Cantini (1989) showed that KF⁻[B] is conservative over B.

- Halbach (2011) noted that the conservativity of FS⁻[B] over B can be established by using:
 - (1) the conservativity of $CT^{-}[B]$ over B for all B, and
 - (2) the proof theoretic reduction of FS[PA] to $RT_{<\omega}$.

Between CT^- and CT_0

Cieślinski (2010) and (2017) showed:

 (1) CT⁻PA] + VAL ⊆ T proves CT₀, where VAL ⊆ T expresses:
 "T contains all arithmetical instances of theorems of first order logic".
 (2) CT⁻[PA] + Cl_{Prop(T)} ⊆ T proves CT₀, where Cl_{Prop}(T) ⊆ T expresses:
 "T is closed, as leaves as stitized logic".

"T is closed under propositional logic".

- It is easy to verify that (1) $CT_0 \vdash VAL \subseteq T$, (2) $CT^- \vdash VAL \subseteq T \rightarrow Cl_{Prop}(T) \subseteq T$, and (3) $CT^-[PA] + Cl_{Prop} \subseteq T \vdash DC \land IC$, where DC (Disjunctive Correctness) is the axiom that expresses: a finite disjunction of arithmetical sentences is true iff one of the disjuncts is true.
- Open Question 1. Is $CT^- + VAL_{Prop} \subseteq T$ conservative over PA?
- I showed (2012) that $CT^{-}[PA] + DC + IC \vdash CT_{0}$.

The surprising power of Disjunctive Correctness (1)

- Theorem (Pakhomov, (2019)) $CT^{-}[PA] + DC \vdash IC$.
- Coupled with the facts that (1) $CT^{-}[PA] + DC + IC$ proves CT_{0} , and (2) CT_{0} proves Con (PA), and (3) Gödel's second incompleteness theorem, Pakhomov's theorem shows that $CT^{-}[PA] + DC$ is not conservative over PA.
- Pakhomov's proof is based on a generalization of Visser's theorem on the non-existence of infinite descending chains of truth definitions. Its proof uses (Löb's version) of Gödel's second incompleteness theorem, and therefore implicitly uses the Gödel-Carnap fixed point theorem.
- Proof Outline. Consider the theory ITB (iterated truth biconditionals) extending Robinson's Q + "≺ is a transitive relation" plus the following biconditionals B_φ:

$$\mathsf{B}_{\varphi} := \forall \alpha (\mathsf{T}_{\alpha}(\ulcorner \phi \urcorner) \leftrightarrow \phi^{\prec \alpha}).$$

Lemma (1) The following theory DTB is inconsistent: DTB := ITB + $\forall \alpha \exists \beta (\beta \prec \alpha) + \exists \alpha (\alpha = \alpha).$ **Lemma (2)** Every finite subtheory of DTB is interpretable in $CT^{-}[I\Delta_{0} + Exp] + DC + \neg IC.$

- Pakhomov later found a proof based on a result of Flumini and Sato concerning the relationship between well-foundedness and the existence of hierarchies in second order systems (2014) whose proof is fixed-point free.
- DC can be written as $DC_{Elim} + DC_{Intro}$.
- Recent joint work of Wcisło, Łełyk and E. shows that DC_{Intro} can be conservatively added to: CT[−][PA] + IC + {∀x (True_Σ(x) → T(x)) : n < ω}.
- Open Problem 2. Is CT⁻[PA] + DC_{Elim} conservative over PA?
- Open Problem 3. Is CT⁻[S¹₂] + DC conservative over PA?

How complex is the reduction of P[B] to B?

• Suppose P[B] is conservative over B. Among the commonly studied computational classes of functions \mathcal{F} , what is the *optimal complexity* class \mathcal{F} that contains some f with the property that for all proofs π and all \mathcal{L}_{B} -sentences ϕ , we have:

$$\mathsf{P}[\mathsf{B}] \vdash_{\pi} \phi \Longrightarrow \mathsf{B} \vdash_{f(\pi)} \phi.$$

 Let Supexp-time be the class of functions that are computable by a Turing machine whose run time is bounded above by a function that is provably total in the fragment of PRA known as SEFA. An examination of Leigh's 2015 proof makes it clear that there is a Supexp-time computable function *f* such that for all proofs π and all *L*_B-sentences φ we have:

$$\mathsf{CT}^{-}[\mathsf{B}] \vdash_{\pi} \phi \Longrightarrow \mathsf{B} \vdash_{f(\pi)} \phi.$$

- By a theorem of Pudlák (1985), if T_1 is a sequential theory, and $T_2 \supseteq T_1$ and T_2 proves the consistency of T_1 on a cut, then T_2 has superexponential speed-up over T_1 .
- Pudlák's above theorem readily implies that CT⁻[B] is not Exp-time reducible to B if B is finitely axiomatizable. Therefore, for finitely axiomatizable B, Leigh's Supexp upper bound is optimal.
- Pudlák's theorem also implies that Supexp is optimal for reducing $CT^{-}[PA] + IC$ to PA.
- What about CT⁻[PA]?

I : B ▷ P[B] is a feasible interpretation if there is a P-time computable function *f*(*s*) such that for all proofs π and all L_{P[B]}-formulae φ,

$$\mathsf{P}[\mathsf{B}] \vdash_{\pi} \phi \Longrightarrow \mathsf{B} \vdash_{f(\pi)} \phi'.$$

• Feasible interpretations were first systematically studied in the 1993 doctoral dissertation of Rineke Verbrugge. She showed, among many other things, that:

There is a sentence θ such that $PA \triangleright PA + \theta$, but $PA \not >_f PA + \theta$.

A family of interpretations {*I_n*}_{n∈ℕ} : B ▷ P[B] is feasibly neat if there are P-time computable functions *f*(*s*₀, *s*₁) and *g*(*s*₀, *s*₁) such that the following two conditions hold:

() For every $k \in \mathbb{N}$, and every \mathcal{L}_{B} -formula ϕ of length at most k,

$$\mathsf{B}\vdash_{f(\mathsf{tal}(k),\phi)} \phi^{I_k} \to \phi,$$

where tal(k) is the tally numeral 1 + 1 + ... + 1 (k times).

2 For every $k \in \mathbb{N}$, and every proof π ,

$$\mathsf{P}[\mathsf{B}] \vdash_{\pi} \phi \Longrightarrow \mathsf{B} \vdash_{g(\mathsf{tal}(k),\pi)} \phi^{I_k}.$$

Theorem (Joint with Mateusz Łełyk and Bartosz Wcisło) (2019). Let
 P denote any of the truth theories CT[−], FS[−], and KF[−]. There is a
 family {I_n}_{n∈ℕ} : PA ▷ P[PA] of feasibly neat interpretations.

Corollaries of the Theorem

- Let P denote any of the truth theories CT⁻, FS⁻ and KF⁻.
- Corollary 1. P[PA] is feasibly reducible to PA ,*i.e.*, there is a polynomial-time computable function f with the property that for all proofs π and all \mathcal{L}_{PA} -sentences ϕ , we have:

$$\mathsf{P}[\mathsf{PA}] \vdash_{\pi} \phi \Longrightarrow \mathsf{PA} \vdash_{f(\pi)} \phi.$$

• Corollary 2. P[PA] has at most polynomial speed-up over PA, i.e., there is a polynomial p(n) such that for all n ∈ N

$$\mathsf{P}[\mathsf{PA}] \vdash^{\leq n} \phi \Longrightarrow \mathsf{PA} \vdash^{\leq p(n)} \phi.$$

 Open Problem 4. Is the conservativity of CT⁻[PA] over PA verifiable in S¹₂?

Thank you for your attention

"I THINK YOU SHOULD BE MORE EXPLICIT HERE IN STEP TWO,"

Ali Enayat (Gothenburg)

NEWS ABOUT TRUTH