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Introduction: First-order logic obeys a zero-one law

Let L be a language of first-order logic with =, but without
function symbols (including constants).

Let An(L) be the set of all (labelled) L-models with universe
{1, . . . , n}.

Let µn(σ) be the fraction of members of An(L) in which σ is true:

µn(σ) = |M∈An(L):M|=σ|
|An(L)|

Then for every σ ∈ L, limn→∞ µn(σ) = 1 or limn→∞ µn(ϕ) = 0.

That is, every formula is either almost surely true or almost surely
false in finite models: a zero-one law.

Example

∀xR(x , x) is almost surely false.
∀x∃yR(x , y) is almost surely true.
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A language of FOL with function symbol
does not obey a zero-one law

Note that the condition that L does not contain function symbols
(including constants) is necessary for the zero-one law to hold.

Example (No 0-1 law for language with unary function symbol)

Let L be {f }, and let σ := ∀x¬(f (x) = x).
Then for all n, µn(σ) = (n−1

n )n (values of f fixed independently)
So limn→∞ µn(σ) = limn→∞(n−1

n )n = 1
e



History of the the zero-one law

Glebskii, Kogan, Liogon’kii and Talanov (1969) first proved the
zero-one law for first-order logic.
It was also proved later but independently by Fagin (1976).

Carnap (1950) had already proved the zero-one law for first-order
languages with only unary predicate symbols.



Sketch of Fagin’s proof for L = {R}: extension axioms

Fagin axiomatized the almost surely true formulas.
For example, let L = {R}, with R a binary predicate symbol.

Extension axioms (Gaifman 1964)

Let T contain all extension axioms of the form:
∀x1 . . . ∀xk(

∧
i 6=j xi 6= xj → ∃y(

∧
i y 6= xi ∧ [¬]Rx1y∧ . . .∧ [¬]Rxky∧

[¬]Ryx1 ∧ . . . ∧ [¬]Rxky∧
[¬]Ryy))

“Every finite set of nodes can be extended by one node in all
possible ways”

Isomorphism lemma

If M1 and M2 are countably infinite models with
M1 |= T and M2 |= T , then M1

∼=M2.

Proof sketch: enumerate elements of M1 as {a1, a2, . . .} and those
of M2 as {b1, b2, . . .}, and do a back-and-forth construction.
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Sketch of Fagin’s proof for L = {R}: equivalences

Let R be the unique countably infinite model with R |= T .

Theorem: Equivalences

For each formula σ, the following are equivalent:

1. R |= σ

2. T ` σ
3. limn→∞ µn(σ) = 1

Proof sketch

1 ⇒ 2 Suppose T 6` σ, then there is a countable model
M |= T + ¬σ. By the Lemma, M∼= R, so R 6|= σ

2 ⇒ 3 For σ ∈ T , limn→∞ µn(σ) = 1 by counting argument
3 ⇒ 1 Suppose R 6|= σ, then R |= ¬σ, so by 1 ⇒ 3,

limn→∞ µn(¬σ) = 1, so limn→∞ µn(σ) 6= 1

Corollary: true in the random graph R ⇔ almost surely true

If R |= σ, then σ is almost surely true; otherwise,
if R 6|= σ, then σ is almost surely false
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A surprising combinatorial result on finite partial orders I

Kleitman and Rothschild (1975) proved that with asymptotic
probability 1, finite partial orders have a special structure. They
can be divided into three levels:
I L1, the set of minimal elements;
I L2, the set of elements immediately succeeding elements in L1;
I L3, the set of elements immediately succeeding elements in L2.

In partial orders of size n, the sizes of L1 and L3 both tend to n
4 ;

the size of L2 tends to n
2 .

As n increases, each element in L1 has as immediate successors
asymptotically half of the elements of L2;
and and each element in L3 has as immediate predecessors
asymptotically half of the elements of L2.



A surprising combinatorial result on finite partial orders II

Kleitman and Rothschild’s (1975) theorem holds for both
non-strict (reflexive) and strict (irreflexive) partial orders.

Compton (1988) used this result to show that the zero-one law for
first-order logic also holds with respect to partial orders.



Sketch of Compton’s proof: extension axioms

Let L = {≤}. Let Tpo contain the usual axioms for partial orders,
plus: ∀x0, x1, x2, x3(

∧
i≤2 xi ≤ xi+1 →

∨
i≤2 xi = xi+1), plus:

Extension axioms

Levels L1, L2, L3 are FO definable. Extension axioms:

I For all distinct x0, . . . , xk−1 and y0, . . . , yj−1 in L2 and all
distinct z0, . . . , zl−1 in L1, there is an element z in L1 not
equal to z0, . . . , zl−1 such that:

∧
i<k z ≤ xi ∧

∧
i<j z 6≤ yi

I For all distinct x0, . . . , xk−1 and y0, . . . , yj−1 in L2 and all
distinct z0, . . . , zl−1 in L3, there is an element z in L3 not
equal to z0, . . . , zl−1 such that:

∧
i<k xi ≤ z ∧

∧
i<j yi 6≤ z

I For all distinct x0, . . . , xk−1 and y0, . . . , yj−1 in L1 and all
distinct x ′0, . . . , x

′
k ′−1 and y ′0, . . . , y

′
j ′−1 in L3, and all distinct

z0, . . . , zl−1 in L2, there is an element z in L2 not equal to
z0, . . . , zl−1 such that:∧

i<k xi ≤ z ∧
∧

i<j yi 6≤ z ∧
∧

i<k ′ z ≤ x ′i ∧
∧

i<j ′ z 6≤ y ′i
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Sketch of Compton’s proof: equivalences

Isomorphism lemma

If M1 and M2 are countably infinite models with
M1 |= Tpo and M2 |= Tpo , then M1

∼=M2.

Proof sketch: Back-and-forth construction. First add three unary
relations to the models for the levels L1, L2, L3. Map elements to
elements at the same level when extending the partial isomorphism.

Let Rpo be the unique countably infinite model with Rpo |= Tpo .

Theorem: Equivalences

For each formula σ, the following are equivalent:

1. Rpo |= σ

2. Tpo ` σ
3. limn→∞ µn(σ) = 1 (on finite partial orders)

The zero-one law for finite partial orders follows.
The proof can be adapted for finite strict (irreflexive) partial orders.



Overview

Zero-one laws: An introduction

Zero-one laws for modal logics

The three logics

Zero-one laws over relevant classes of finite models

How about zero-one laws for classes of finite frames?

Conclusions and current work



Reminder: models of modal logics

Definition: Modal language

Let Φ = {p1, . . . , pk} be a finite set of propositional atoms.
L(Φ), the modal language over Φ, is the smallest set closed under:

1. If p ∈ Φ, then p ∈ L(Φ).

2. If A ∈ L(Φ) and B ∈ L(Φ), then also ¬A ∈ L(Φ),
(A ∧ B) ∈ L(Φ), (A ∨ B) ∈ L(Φ), (A→ B) ∈ L(Φ),
2A ∈ L(Φ), 3(ϕ) ∈ L(Φ)

Definition: Model M = (W ,R ,V )
I W is a non-empty set of worlds

I R is a binary accessibility relation

I V assigns to each atomic proposition p in each world w ∈W
a truth value: Vw (p) = 0 (false) or Vw (p) = 1 (true)

The truth definition is as usual, including:
M,w |= 2ϕ iff for all w ′ such that wRw ′,M,w ′ |= ϕ
M,w |= 3ϕ iff there is a w ′ such that wRw ′ and M,w ′ |= ϕ
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Validity of formulas in models of modal logics

Definition: validity of a formula in a model

Formula ϕ is valid in M = (W ,R,V ) (notation M |= ϕ) iff for all
w ∈W , M,w |= ϕ.
Formula ϕ is valid iff for all models M, M |= ϕ.

Definition: measure of validity in models of size n

Let Mn,Φ be the set of finite labeled Kripke models over Φ with
set of worlds W = {1, . . . , n}.

Let νn,Φ(ϕ) be the measure in Mn,Φ of the subset of those Kripke
models in which ϕ is valid (based on uniform probability
distibution).
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Zero-one laws for models of modal logic

Halpern and Kapron (1994) proved that every formula ϕ in L(Φ) is
either valid in almost all models or not valid in almost all models:
Either limn→∞ νn,Φ(ϕ) = 0 or limn→∞ νn,Φ(ϕ) = 1.

Thus, a zero-one law holds for model validity (no restrictions on
the accessibility relation)



What I want to prove

Main aim

I want to investigate whether modal zero-one laws also hold with
respect to models of

I provability logic,

I Grzegorczyk logic, and

I weak Grzegorczyk logic.

If so, I want to axiomatize the almost sure validities for each of the
corresponding three model classes.

Secondary aim

What can be said about almost sure frame validity in these three
(and other) modal logics?

Reminder: A formula ϕ is valid in frame F = (W ,R) iff for all
valuations V , ϕ is valid in the model (W ,R,V ).
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Provability logic GL (Gödel-Löb)

GL contains all axiom schemes from K and the extra scheme GL:

All (instances of) propositional tautologies (A1)

�(ϕ→ ψ)→ (�ϕ→ �ψ) (A2)

�(�ϕ→ ϕ)→ �ϕ (GL)

The rules of inference of GL are modus ponens and necessitation.

Note that GL ` �ϕ→ ��ϕ (De Jongh, Sambin, 1973)

Provability logic is sound and complete with respect to all finite,
transitive, irreflexive frames (Segerberg, 1971).
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Grzegorczyk logic Grz

Grz, a.k.a. S4Grz, has the same axiom schemes and inference
rules as GL, except that axiom GL is replaced by Grz:

2(2(ϕ→ 2ϕ)→ ϕ)→ ϕ (Grz)

Again, Grz ` �ϕ→ ��ϕ (Blok and Van Benthem, 1978)
But also Grz ` �ϕ→ ϕ
Grz is sound and complete with respect to the class of all finite
transitive, reflexive and anti-symmetric frames (Segerberg 1971).
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Weak Grzegorczyk logic wGrz

wGrz, a.k.a. K4Grz, has the same axiom schemes and inference
rules as GL, except that axiom GL is replaced by wGrz:

2+(2(ϕ→ 2ϕ)→ ϕ)→ ϕ (wGrz)

Here, 2+ψ := 2ψ ∧ ψ

Again, wGrz ` �ϕ→ ��ϕ
(Litak 2007)

However, wGrz 6` �ϕ→ ϕ

wGrz is a proper sublogic of GL ∩ Grz
(Litak 2007)

wGrz is sound and complete w.r.t. the class of all finite transitive,
anti-symmetric frames (need be neither irreflexive nor reflexive).
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Relations between the three logics GL, Grz, wGrz

Goldblatt (1978) a.o. proved that Grz can be faithfully and fully
translated into GL. Define the splitting translation by:
I p+

i = pi for atomic sentences pi ∈ Φ;
I (ϕ ∧ ψ)+ = (ϕ+ ∧ ψ+) (similarly other connectives);
I (2ϕ)+ = 2ϕ+ ∧ ϕ+.

Then for all ϕ ∈ L(Φ): Grz ` ϕ if and only if GL ` ϕ+

Esakia (2006) proved that the splitting translation + also faithfully
and fully translates Grz into wGrz:

Grz ` ϕ if and only if wGrz ` ϕ+
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GL: Zero-one law for finite irreflexive transitive models

Let Mn,Φ be the set of finite labeled irreflexive transitive Kripke
models over Φ with set of worlds W = {1, . . . , n}.
Let νn,Φ(ϕ) be the measure in Mn,Φ of the subset of those models
in which ϕ is valid.

Theorem (0-1 law)

For every formula ϕ in L(Φ):
Either limn→∞ νn,Φ(ϕ) = 0 or limn→∞ νn,Φ(ϕ) = 1.

We will show this in two ways:

1. in an easy way by Van Benthem’s translation

2. in a more informative way, providing an axiomatization of
almost sure validities.
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GL: Easy proof of the zero-one law

Van Benthem’s translation method (1976 / 1983)

Let ∗ be the translation from L(Φ) to FOL given by:

I p∗i = Pi (x) for atomic sentences pi ∈ Φ;

I (¬ϕ)∗ = ¬ϕ∗;
I (ϕ ∧ ψ)∗ = (ϕ∗ ∧ ψ∗) (similarly for other binary connectives);

I (2ϕ)∗ = ∀y(Rxy → ϕ∗[y/x ]) (similarly for 3).

Van Benthem mapped each Kripke model M = (W ,R,V ) to a
classical model M∗ with as objects the worlds in W and the
obvious binary relation R, while each Pi = {w ∈W | M,w |= pi}.
He proved that M |= ϕ iff M∗ |= ∀x ϕ∗.

Corollary of Compton’s 0-1 law for finite irreflexive orders

Now for each modal formula ϕ ∈ L(Φ),
either limn→∞ µn(∀x ϕ∗) = 1 or limn→∞ µn(∀x ϕ∗) = 0, so
either limn→∞ νn(ϕ) = 1 or limn→∞ νn(ϕ) = 0
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GL: Axiomatizing the almost sure model validities

Axiom system AXΦ,M
GL has the axioms and rules of GL plus:

222⊥ (T3)

3> → 3A (C1)

33> → 3(B ∧3C ) (C2)

In the axiom schemes C1 and C2, the formulas A, B and C all
stand for consistent conjunctions of literals over Φ.

Example

For Φ = {p1, p2}, the axiom scheme C1 boils down to:

3> → 3(p1 ∧ p2)

3> → 3(p1 ∧ ¬p2)

3> → 3(¬p1 ∧ p2)

3> → 3(¬p1 ∧ ¬p2)

Note that AXΦ,M
GL is a propositional theory closed under MP, but

not closed under uniform substitution, so not a normal modal logic
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A canonical asymptotic Kripke model for GL

Define MΦ
GL = (W ,R,V ) as follows:

W = {bv ,mv , uv | v a propositional valuation on Φ};
R = {〈bv ,mv ′〉 | v , v ′ propositional valuations on Φ}∪

{〈mv , uv ′〉 | v , v ′ propositional valuations on Φ}∪
{〈dv , uv ′〉 | v , v ′ propositional valuations on Φ}; and

for all pi ∈ Φ, V is defined by Vbv/mv/uv (pi ) = 1 iff v(pi ) = 1

Example (for Φ = {p1, p2})

bv1
p1, p2 bv2

p1 bv3
p2 bv4

mv1p1, p2 mv2p1 mv3p2 mv4

uv1p1, p2 uv2p1 uv3p2 uv4



GL: Zero-one law for finite irreflexive transitive models

The zero-one law for model validity now follows from the theorem:

Theorem

For every formula ϕ ∈ L(Φ), the following are equivalent:

1. MΦ
GL |= ϕ;

2. AXΦ,M
GL ` ϕ;

3. limn→∞ νn,Φ(ϕ) = 1;

4. limn→∞ νn,Φ(ϕ) 6= 0.

The proof is by a circle of implications 1 ⇒ 2 ⇒ 3 ⇒ 4 ⇒ 1.

3 ⇒ 4 is trivial. Let’s sketch the other steps.



GL: Zero-one law for finite irreflexive transitive models:
proof 1 ⇒ 2

For every formula ϕ ∈ L(Φ), 1 ⇒ 2:

1. MΦ
GL |= ϕ;

2. AXΦ,M
GL ` ϕ;

Example (Proof sketch by contraposition, for Φ = {p1, p2})
Let ϕ ∈ L(Φ) with AXΦ,M

GL 6` ϕ. Then ¬ϕ is AXΦ,M
GL -consistent.

By Lindenbaum, extend it to a maximal AXΦ,M
GL -consistent set ∆.

Define the canonical model MΦ,M
GL = (W ,R,V ):

I W = {wΓ | Γ is maximally AXΦ,M
GL -consistent}.

I R = {〈wΓ,w∆〉 | wΓ,w∆ ∈W and for all 2ψ ∈ Γ, ψ ∈ ∆}
I For each wΓ ∈W : VwΓ

(p) = 1 iff p ∈ Γ

As usual, MΦ,M
GL ,w∆ 6|= ϕ. The model is isomorphic to the

canonical asymptotic model MΦ
GL. Therefore, MΦ

GL 6|= ϕ.



GL: Zero-one law for models: proof 2 ⇒ 3

For every formula ϕ ∈ L(Φ), 2 ⇒ 3:

2. AXΦ,M
GL ` ϕ;

3. limn→∞ νn,Φ(ϕ) = 1;

Example (Proof sketch: C1 almost surely true, Φ = {p1, p2})
To show: 3> → 3(p1 ∧ ¬p2) holds in almost all K-R models.
Consider a state s in a K-R model of n elements where 3> holds.
Then s has asymptotically at least 1

4 ·
1
2 · n direct successors.

The probability that some state t is a direct successor of s that
makes p1 ∧ ¬p2 true is therefore ≥ 1

8 ·
1
22 = 1

32 .
Thus, the probability that s does not have any direct successors in
which p1 ∧ ¬p2 holds is ≤ (1− 1

32 )n.
Therefore, the probability that there is some s in a K-R model not
having any direct successors satisfying p1 ∧ ¬p2 is ≤ n · (1− 1

32 )n.
It is known that limn→∞ n · (1− 1

32 )n = 0, so
limn→∞ νn,Φ(3> → 3(p1 ∧ ¬p2)) = 1.



GL: Zero-one law for models: 4 ⇒ 1

For every formula ϕ ∈ L(Φ), 4 ⇒ 1:

1. MΦ
GL |= ϕ;

4. limn→∞ νn,Φ(ϕ) 6= 0.

Example (Proof sketch by contraposition, for Φ = {p1, p2})
Suppose that MΦ

GL, s 6|= ϕ. To show: this counter-model can be
copied into almost every K-R model as they grow large enough.
Consider a large K-R model M ′ = (W ′,R ′,V ′) of three layers.
As example, suppose s is in the middle layer of MΦ

GL.
Large enough M ′ will have an s ′ in the middle layer with:
I the same valuation for p1, p2 as MΦ

GL, s, and

I with direct access to at least 4 different states in the top layer
of M ′, for all 4 valuations.

So MΦ
GL, s and M ′, s ′ satisfy the same formulas.

Similarly for s in top or bottom layer of M.
Conclusion: limn→∞ νn,Φ(ϕ) = 0.



Grz: Zero-one law for finite reflexive transitive
antisymmetric models

Define axiom system AXΦ,M
Grz as Grz plus the following axioms:

ϕ→ ¬3(¬ϕ ∧ ψ ∧3(¬ψ ∧ χ ∧3¬χ)) (D3)

(ϕ ∧3¬ϕ)→ 3A (C3)

(ϕ ∧3(¬ϕ ∧ ψ ∧3¬ψ))→ 3(B ∧3C ) (C4)

In these axiom schemes, ϕ, ψ, χ stand for any formulas in L(Φ);
A,B,C stand for consistent conjunctions of literals over Φ.

Example (Φ = {p1, p2})
The axiom scheme C4 boils down to:

(ϕ ∧3¬ϕ)→ 3(p1 ∧ p2)

(ϕ ∧3¬ϕ)→ 3(p1 ∧ ¬p2)

(ϕ ∧3¬ϕ)→ 3(¬p1 ∧ p2)

(ϕ ∧3¬ϕ)→ 3(¬p1 ∧ ¬p2)

AXΦ,M
Grz is closed under MP, but not under uniform substitution



The canonical asymptotic Kripke model

The canonical asymptotic Kripke model MΦ
Grz for Grz is the

reflexive closure of the one for GL.

Example (for Φ = {p1, p2})

bv1
p1, p2 bv2

p1 bv3
p2 bv4

mv1p1, p2 mv2p1 mv3p2 mv4

uv1p1, p2 uv2p1 uv3p2 uv4

The 0-1 law for Grz can be proved analogously to the one for GL.
Note: almost sure model validities for Grz and S4 coincide.



wGrz: Zero-one law for finite transitive antisymmetric
models

Define axiom system AXΦ,M
Grz as wGrz plus the following axioms:

ϕ→ ¬3(¬ϕ ∧ ψ ∧3(¬ψ ∧ χ ∧3¬χ)) (D3)

(ϕ ∧3¬ϕ)→ 3A (C3)

(ϕ ∧3(¬ϕ ∧ ψ ∧3¬ψ))→ 3(B ∧3C ) (C4)

In these axiom schemes, ϕ, ψ, χ stand for any formulas in L(Φ);
A,B,C stand for consistent conjunctions of literals over Φ.

The canonical asymptotic Kripke model MΦ
wGrz for wGrz is an

algamation of those for GL and for Grz, with a reflexive and an
irreflexive copy of each world (corresponding to each propositional
valuation at all three levels).

The 0-1 law for wGrz can be proved analogously to the one for Gl.
Note: almost sure model validities for wGrz and K4 coincide.
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Complexity of decision problems for the three siblings

It is known that the satisfiability problems for the modal logics GL,
Grz, and wGrz are PSPACE-complete, just like those for K, K4,
and S4.

Complexity of almost sure model validity

In contrast, for the three modal logics GL, Grz, and wGrz, if we
restrict to language L(Φ) with finite Φ, the problem of deciding
whether limn→∞ νn,Φ(ϕ) = 1 is in PTIME: just check the
appropriate finite canonical model.

If Φ is enumerably infinite, these problems are in ∆p
2 (Halpern and

Kapron, 1994).



Overview

Zero-one laws: An introduction

Zero-one laws for modal logics

The three logics

Zero-one laws over relevant classes of finite models

How about zero-one laws for classes of finite frames?

Conclusions and current work



Reminder: frames of modal logics

Definition: Frame F = (W ,R)
I W is a non-empty set of worlds

I R is a binary accessibility relation

Definition: validity of a formula in a frame

Formula ϕ is valid in frame F = (W ,R) iff
for all valuations V over L(Φ) and all w ∈W , M,w |= ϕ

So validity in all models in a class coincides with validity in all
frames in that class.



Frame validity in the limit

Definition: measure of validity in frames of size n

Let Fn,Φ be the set of finite labeled Kripke frames over Φ with set
of worlds W = {1, . . . , n}.

Let µn,Φ(ϕ) be the measure in Fn,Φ of the subset of those Kripke
frames in which ϕ is valid (based on uniform probability
distribution).

Example

Note that almost sure model validity and almost sure frame
validity behave quite differently.

For example, 3> → 3p1 is valid in almost all GL-models,
but not in almost all GL-frames:
For every Kleitman-Rothschild frame, take a valuation that makes
p1 false everywhere. Clearly, limn→∞ νn,Φ(3> → 3p1) = 0
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Surprising history: 0-1 laws for frame validity for K, T?

Halpern and Kapron (1994) proposed four axiomatizations for each
of the sets of formulas that would be almost surely valid in the
four classes of frames corresponding to K, T, S4 and S5.

Goranko and Kapron (2003) cast doubt on the 0-1 law for frame
validity for K: ¬22(p ↔ ¬3p) fails in the countably infinite
random frame, while it is almost surely valid in finite K-frames.

Le Bars (2003) proved Halpern and Kapron wrong for K:
There is no 0-1 law with respect to K-frames.
q ∧ ¬p ∧22((p ∨ q)→ ¬3(p ∨ q)) ∧23p does not have an
asymptotic probability. This can probably be adapted for T.
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Surprising history: 0-1 laws for frame validity for S4?

Halpern and Kapron (1994) proposed the following axiomatization
for the set of formulas that would be almost surely valid in
reflexive transitive frames corresponding to S4’.

S4′ contains all axiom schemes from K and the extra schemes:

�ϕ→ ��ϕ (4)

�ϕ→ ϕ (T)

¬(p ∧3(¬p ∧3(p ∧3¬p))) (DEP2’)

The rules of inference of S4′ are modus ponens and necessitation.

But S4′ is not complete for almost sure frame validities (V 2018).

Example (non-completeness of S4′)

(p ∧ q ∧3(¬p ∧3p ∧�r))→ �((¬q ∧3q)→ 3r)
characterizes the diamond property on three levels:
∀x ∈ L1,∀y , z ∈ L2((Rxy ∧ Rxz)→ ∃u ∈ L3(Ryu ∧ Rzu)).
So it is valid in almost all reflexive Kleitman-Rothschild frames;
but it does not follow from S4′.
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How about GL?

Take Φ = {p1, . . . , pk}. The axiom system AXΦ,F
GL has the same

axioms and rules as GL, plus the following axiom schemas, for all
k ∈ N, where all ϕi ∈ L(Φ):

222⊥ (DEPTH2)

33> ∧
∧
i≤k

3(3> ∧2ϕi )→ 2(3> → 3(
∧
i≤k

ϕi ))

(DIAMOND-k)

33> ∧
∧
i≤k

3(2⊥ ∧ ϕi )→ 3(
∧
i≤k

3ϕi ) (UMBRELLA-k)

Example (DIAMOND-0)

DIAMOND-0 is the formula
33> ∧3(3> ∧2ϕ0)→ 2(3> → 3(ϕ0)),
which characterizes the ‘diamond’ property that if a bottom layer
world has two direct successors in the middle layer, then these have
a common successor in the top layer.
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How about GL? (cont.)

Take Φ = {p1, . . . , pk}. The axiom system AXΦ,F
GL has the same

axioms and rules as GL, plus the following axiom schemas, for all
k ∈ N, where all ϕi ∈ L(Φ):

222⊥ (DEPTH2)

33> ∧
∧
i≤k

3(3> ∧2ϕi )→ 2(3> → 3(
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i≤k

ϕi ))

(DIAMOND-k)

33> ∧
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i≤k

3(2⊥ ∧ ϕi )→ 3(
∧
i≤k

3ϕi ) (UMBRELLA-k)

Example (UMBRELLA-0)

UMBRELLA-0 is the formula 33> ∧3(2⊥ ∧ ϕ0)→ 33ϕ0,
which characterizes the property that bottom layer worlds don’t
have any direct successor in the top layer, but only via an
intermediate world in the middle layer.
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GL: Zero-one law for finite irreflexive transitive frames

Note that AXΦ,F
GL ` ϕ is not finitely axiomatizable by a result of

Tarksi: the DIAMOND-k and UMBRELLA-k sequences have
strictly increasing strength.

Conjecture: 0-1 law for GL-frames

For every formula ϕ ∈ L(Φ), the following are equivalent:

1. AXΦ,F
GL ` ϕ;

2. limn→∞ µn,Φ(ϕ) = 1;

3. limn→∞ µn,Φ(ϕ) 6= 0.

The proof is by a circle of implications 1 ⇒ 2 ⇒ 3 ⇒ 1.

2 ⇒ 3 is trivial.
3 ⇒ 1 is work in progress.
Let’s sketch 1 ⇒ 2.



GL: Zero-one law for frames: proof 1 ⇒ 2

For every formula ϕ ∈ L(Φ), 1 ⇒ 2:

If AXΦ,F
GL ` ϕ, then limn→∞ µn,Φ(ϕ) = 1

In all finite irreflexive K-R frames, GL + 222⊥ is valid.
We check almost-sure frame validity of DIAMOND-k and
UMBRELLA-k.

Almost sure validity of DIAMOND-k

33> ∧
∧

i≤k 3(3> ∧2ϕi )→ 2(3> → 3(
∧

i≤k ϕi ))
characterizes a k-fold, three layer version of the diamond property:
∀w ∈ L1∀x0 . . . xk ∈ L2(

∧
i≤k wRxi → ∃z ∈ L3(

∧
i≤k xiRz)).

This property follows from an irreflexive version of Compton’s
extension axioms, and is therefore almost surely the case in K-R
frames.

Therefore, 33> ∧
∧

i≤k 3(3> ∧2ϕi )→ 2(3> → 3(
∧

i≤k ϕi ))
is almost surely valid in finite irreflexive transitive frames.
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three layer ‘umbrella’ property:
∀w ∈ L1∀x0 . . . xk ∈ L3(

∧
i≤k wRxi → ∃z ∈ L2(wRz ∧

∧
i≤k zRxi )).

This property follows from an irreflexive version of Compton’s
extension axioms, and is therefore almost surely the case in K-R
frames.

Therefore, 33> ∧
∧

i≤k 3(2⊥ ∧ ϕi )→ 3(
∧

i≤k 3ϕi ) is almost
surely valid in finite irreflexive transitive frames.



Conclusions and current work

Conclusion

Zero-one laws hold for finite models of provability logic,
Grzegorczyk logic and weak Grezgorczyk logic.

For all three logics, the almost sure model validities can be
axiomatized.

Current work

Finish the proof of completeness of the (infinite) axiomatization of
the almost sure frame validities of GL

Give the correct (infinite) axiomatizations for almost sure frame
validities for S4, Grz, K4 and wGrz.
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