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Unwinding of proofs and Proof Mining

Starting in the 50’s Kreisel proposed to use proof-theoretic

transformations (developed in pursuing Hilbert’s program) to

extract (‘unwind’) new information (bounds etc.) from

interesting given proofs.

Early ‘unwindings’ concerned mainly algebra, number theory,

combinatorics (Kreisel, Delzell, Girard, Macintyre, Luckhardt).

Since 90’s mainly applications in analysis (‘proof mining’)
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Proof Mining since 2000 (abstract classes of spaces)

Since K. NFAO 2001: applications of proof mining in analysis with

abstract metric spaces involved: fixed point and ergodic

theory, convex optimization, geodesic geometry, Cauchy

problems, game theory etc.

Setting: X normed linear or geodesic space, C ⊆ X some (often

convex) subset and T : C → C or F : C → R nonlinear maps.

Covers numerous fixed point, zero-finding, minimization or

equilibirium problems with iterative procedures (xn) s.t. e.g. in the

case of fixed point problems one has

(1) d(xn,Txn)
n→∞→ = 0 or even

(2) (xn) strongly converges to the fixed point of T .
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For such situations, special designed (for particular classes of

spaces X and mappings T ) logical metatheorems (K. TAMS

2005, Gerhardy/K. TAMS 2008) have been designed which

guarantee the extractability of explicit uniform bounds for

∀x ∈ N,NN,X ,XX ,XN . . . ∃n ∈ NA(x, n)-theorems.

Due to classical logic: in general A must be existential A∃.

For restricted use of LEM arbitrary A!

The logical metatheorems guarantee the extractability of

effective bounds on ‘∃’ independent from parameters in

compact metric spaces (if separability is used) and

bounded subsets of abstract metric structures X .
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Formal systems for analysis with abstract metric spaces X

Types: (i) N,X are types, (ii) with ρ, τ also ρ→ τ is a type.

PAω,X is the extension of Peano Arithmetic to all types.

Aω,X :=PAω,X+Dependent choice in all types.

Implies full comprehension for numbers (2nd order arithmetic).

In practice: only weak fragments needed (after pre-processing).

Equality is a defined notion: xX =X yX :≡ dX (x, y) =R 0R.

In general only rule
s =X t

T (s) =X T (t)
.

Aω[X , ‖ · ‖ . . .] e.g. results by adding constants with axioms

expressing that (X , ‖ · ‖) is normed, uniformly convex, Hilbert.
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Special case of general logical metatheorems (T nonexpansive):

Corollary (Gerhardy/K., TAMS 2008)

If Aω[X , ‖ · ‖] proves (‘n.e.’ means ‘nonexpansive’)

∀n ∈ N ∀x ∈ X ∀T : X → X
(
T n.e.→ ∃k ∈ NA∃

)
,

then one can extract a computable function Φ : N2 → N
s.t. in all normed spaces X it holds that

∀n, b ∈ N∀x ∈ X ∀T : X → X(
T n.e. ∧ ‖x‖, ‖T (0)‖ ≤ b → ∃k ≤ Φ(n, b) A∃

)
.

Similar for Hilbert spaces and uniformly convex spaces (then bound

depends on modulus of convexity). In metric setting: d(x ,Tx) ≤ b.

Method: Novel forms of Gödel’s functional interpretation!
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Method: Novel forms of Gödel’s functional interpretation!

Ulrich Kohlenbach Local proof-theoretic foundations and proof-theoretic tameness



Special case of general logical metatheorems (T nonexpansive):

Corollary (Gerhardy/K., TAMS 2008)

If Aω[X , ‖ · ‖] proves (‘n.e.’ means ‘nonexpansive’)

∀n ∈ N ∀x ∈ X ∀T : X → X
(
T n.e.→ ∃k ∈ NA∃

)
,

then one can extract a computable function Φ : N2 → N
s.t. in all normed spaces X it holds that

∀n, b ∈ N∀x ∈ X ∀T : X → X(
T n.e. ∧ ‖x‖, ‖T (0)‖ ≤ b → ∃k ≤ Φ(n, b) A∃

)
.

Similar for Hilbert spaces and uniformly convex spaces (then bound

depends on modulus of convexity). In metric setting: d(x ,Tx) ≤ b.
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Applicability of Metatheorem

Applied to asymptotic regularity statements d(xn,Txn)→ 0,

the corollary often gives full rates of convergence, e.g. because

(d(xn,Txn)) is nonincreasing so that d(xn,Txn)→ 0 ∈ ∀∃.

From proofs of the convergence of (xn) itself, one may only

get rates of metastability Φ (Kreisel 1951, K.05,Tao 07) s.t.

∀k ∈ N ∀g ∈ NN∃n ∈ N∀i , j ∈ [n, n+g(n)] (d(xi , xj ) < 2−k) ∈ ∀∃.
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Admissible abstract structures: metric, hyperbolic, CAT(0),

CAT(κ > 0), Ptolemy, normed, their completions, Hilbert,

uniformly convex, uniformly smooth (not: separable, strictly

convex or smooth) spaces, abstract Lp- and C (K )-spaces (and

all other normed structures axiomatizable in positive bounded

logic (in the sense of Henson, Iovino, Ben-Yaacov etc.).

Admissible classes of functions: uniformly continuous,

Lipschitzian, nonexpansive, firmly- and strongly nonexpansive

functions; also some classes of discontinuous functions:

pseudo-contractions, maps with Suzuki’s condition (E ) etc.

Recently: set-valued accretive operators (Cauchy problems).

(K./Koutsoukou-Argyraki, K./Powell).
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Uses of ultraproducts made in model theory can often be

replaced by a proof-theoretic uniform boundedness

principle UB which can be eliminated from proofs without

contributing to the extracted bounds (K. ENTCS 2006,

Engracia 2009, Günzel/K. Adv. Math. 2016). Recently UB

has been used to replace sequential weak compactness

(Ferreira, Leuştean, Pinto, Adv. Math. to appear).
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Experience from numerous case studies

Essentially, all rates of asymptotic regularity extracted have

a very low complexity (polynomial or exponential in the

data) at least in the most relevant special cases.

Except for 2 cases, all rates of metastability are of

essentially the form

Φ(a, g) = (χ1(a) ◦ g ◦ χ2(a))B(a) (0)

for simple (essentially polynomial) functions χ1, χ2,B in

majorants a of the parameters of the problem.

Implies: algorithmic learnability of a rate of convergence

which - if a gap condition is satisfied - yields oscillation

bounds (K./Safarik APAL 2014, Avigad/Rute ETDS 2015).
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Proof-theoretic versus model-theoretic tameness

In the recent book ‘Model Theory and the Philosophy of

Mathematical Practice: Formalization without

Foundationalism’, John Baldwin has argued that model theory

became successful in applications to core mathematics by

focusing on local foundations/formalizations rather than

global ones and on tame structures (e.g. o-minimal ones).

We argue, that in a related way, also ‘proof mining’ is

successful by focusing on specific classes of problems (e.g.

iterations of nonlinear operators T : C → C on general convex

subsets of abstract classes of normed or geodesic spaces).
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Proof-theoretic versus model-theoretic tameness

In contrast to model-theoretic tameness, quantification over N
and inductions etc. are crucially used in connection with

convergence statements so that Gödel-phenomena could

occur in principle.

A different form of ‘proof-theoretic tameness’ in existing

ordinary (nonlinear) analysis largely leads to extractable

bounds of very low complexity.

Geometric properties such as uniform convexity and

smoothness etc. more important than complicated

inductions.
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Proof-theoretic versus model-theoretic tameness

To detect proof-theoretic tameness requires to actually

carry out the proof analysis (though usually some rough

upper bound on the complexity can be obtained from

proof-theoretic conservation results).
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Proof-theoretic tameness in practice I:

Polynomial rate of asymptotic regularity in
Bauschke’s solution of the ‘zero displacement

conjecture’
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Consider a Hilbert space H and nonempty closed and convex

subsets C1, . . . ,CN ⊆ H with metric projections PCi , define

T := PCN ◦ . . . ◦ PC1 . In 2003 Bauschke proved the ‘zero

displacement conjecture’:

‖T n+1x − T nx‖ → 0 (x ∈ H).

Previously only known for N = 2 or Fix(T ) 6= ∅ (or even⋂N
i=1 Ci 6= ∅) or Ci half spaces etc. starting with von Neumann.

Proof uses abstract theory of maximal monotone operators:

Minty’s theorem, Brézis-Haraux theorem, Rockafellar’s maximal

monotonicity and sum theorems, strongly nonexpansive mappings,

conjugate functions, normal cone operator...).
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Previously only known for N = 2 or Fix(T ) 6= ∅ (or even⋂N
i=1 Ci 6= ∅) or Ci half spaces etc. starting with von Neumann.

Proof uses abstract theory of maximal monotone operators:

Minty’s theorem, Brézis-Haraux theorem, Rockafellar’s maximal

monotonicity and sum theorems, strongly nonexpansive mappings,
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(‖T n+1x − T nx‖)n∈N is nonincreasing and hence the

conclusion in Bauschke’s theorem is of the form ∀∃.

Extractability of a uniform rate of asymptotic regularity which only

depends on the error ε > 0, N ∈ N, b ≥ ‖x‖ and

K ≥ ‖c1‖, . . . , ‖cN‖ for some arbitrary points

c1 ∈ C1, . . . , cN ∈ CN since ‖PCi 0‖ ≤ ‖ci‖ ≤ K and PCi

nonexpansive!

So corollary guarantees a computable Φ(ε,N, b,K) s.t.

∀ε > 0 ∀n ≥ Φ(ε,N, b,K) (‖T n+1x − T nx‖ < ε).
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Theorem (K. FoCM 2019)

Φ(ε,N, b,K) :=

⌈
18b + 12α(ε/6))

ε
− 1

⌉ ⌈(
D

ω(D, ε̃)

)⌉
is a rate of asymptotic regularity in Bauschke’s result, where

ε̃ :=
ε2

27b + 18α(ε/6)
,D := 2b+NK , ω(D, ε̃) :=

1

16D
(ε̃/N)2.

α(ε) :=
(K2 + N3(N − 1)2K2)N2

ε
.

Here b ≥ ‖x‖ and K ≥
(∑N

i=1 ‖ci‖2
) 1

2
for some

(c1, . . . , cN) ∈ C1 × . . .× CN .
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Proof-theoretic tameness in practice II:

Pursuit-evasion games: Lion-Man
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Let (X , d) be a uniquely geodesic space, D > 0. L0,M0 ∈ A

starting points of the lion L and the man M. After n-steps, M

moves to any point Mn s.t. d(Mn,Mn+1) ≤ D and L moves via the

geodesic [Ln,Mn] s.t. d(Ln, Ln+1)=min{D, d(Ln,Mn)}.

Lopéz-Acedo/Nicolae/Piatek, Geom.Dedicat. to appear: if X is a

compact uniquely geodesic space with the betweenness property,

then the lion wins i.e. lim d(Ln+1,Mn) = 0 (proof makes

iterated use of sequential compactness, i.e. arithmetic

comprehension ACA).

‘lim d(Ln+1,Mn) = 0’∈ Π0
2 since the sequence is nonincreasing!
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Proof Mining extracts an explicit rate of convergence if

one upgrades ‘uniquely geodesic’ and ‘betweenness property’

to ‘uniform uniquely geodesic (with modulus)’ and

‘uniform betweenness property (with modulus Θ)’.

With these upgrades the assumption of compactness can be

replaced by boundedness in this particular case!

Even the uniqueness of geodesics can be dropped.

Proof mining provides an explicit rate of convergence which

only depends on Θ (in addition to b ≥ diam(A),D, ε > 0).

Moduli of uniform betweenness can be extracted from

proofs of mere betweenness for the admissible structures.
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Betweenness and uniform betweenness in metric spaces

Definition (Diminnie and White 1981)

Let (X , d) be a metric space. X satisfies the betweenness property

if for any distinct points x , y , z ,w ∈ X

d(x , y) + d(y , z) ≤ d(x , z)

d(y , z) + d(z ,w) ≤ d(y ,w)

}
⇒ d(x , z) + d(z ,w) ≤ d(x ,w).

For normed spaces, betweenness follows from (but is strictly

weaker than) strict convexity. It fails for (R2, ‖ · ‖∞), (R2, ‖ · ‖1)

but holds for some nonstrictly convex spaces.
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The functional interpretation upgrades betweenness to (equivalent

in the compact case!):

Definition (K., Lopéz-Acedo, Nicolae 2019)

A metric space (X , d) satisfies the uniform betweenness property

with modulus Θ : (0,∞)3 → (0,∞) if

∀ε, a, b > 0 ∀x, y , z,w ∈ X


sep{x, y , z,w} ≥ a ∧ diam{x, y , z,w} ≤ b

d(x, y) + d(y , z) ≤ d(x, z) + Θ(ε, a, b)

d(y , z) + d(z,w) ≤ d(y ,w) + Θ(ε, a, b)


⇒ d(x, z) + d(z,w) ≤ d(x,w) + ε


.
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Definition (Lion-Man Game in general metric spaces)

X metric space, D > 0, (Mn), (Ln) be sequences in X s.t.

d(Mn,Mn+1) ≤ D, d(Ln+1, Ln) + d(Ln+1,Mn) = d(Ln,Mn),

d(Ln, Ln+1) = min{D, d(Ln,Mn)}.

Then 〈(Mn), (Ln)〉 is a Lion-Man game with speed D > 0.

Let X be a b-bounded metric space with the uniform betweenness

property with modulus Θ satisfying

Θ(ε) := Θ(ε, ε, b) ≤ ε for all ε > 0.

For D > 0 let N ∈ N be s.t. b + 1 < ND.
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Theorem (K./Lopéz-Acedo/Nicolae 2019)

Let X be a bounded metric space with the uniform betweenness

property and 〈(Mn), (Ln)〉 be a Lion-Man game, speed D > 0.

Then the Lion approaches the man arbitrarily close.

Moreover with b ≥ diam(X ), Θ, N as above:

∀ε > 0∀n ≥ ΩD,b,Θ(ε) (d(Ln+1,Mn) < ε),

where
ΩD,b,Θ(ε) = N + N

⌈
b

Θ(N)(α)

⌉
with

0 < α ≤ min

{
1

N
,
D
2
,
ε

2

}
.
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Moduli of uniform betweennes

Θ can be explicitly computed for Lp (1 < p <∞) (of order 2

if 1 < p < 2 and of order p if 2 ≤ p <∞) and

CAT(κ)-spaces, κ > 0 (of order 2).

Low complexity Θ’s can also be obtained in a number of

non-uniquely geodesic normed and metric cases!
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A borderline case for
proof-theoretic tameness

U. Kohlenbach, A. Sipoş, The finitary content of sunny

nonexpansive retractions. arXiv:1812.04940 [math.FA], 2018.
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The Browder-Halpern result

Let C ⊆ H be a bounded, closed and convex subset of a Hilbert

space H. T : C → C be nonexpansive, x0 ∈ C and t ∈ [0, 1).

Tt : C → C , Tt(x) := tTx + (1− t)x0

is a t-contraction and so has a unique point xt with xt = Ttxt .

Theorem (Browder 1967; Halpern 1967)

p := limt→1 xt exists strongly and p = PFix(T )x , where P denotes

the metric projection.

Even in simple cases on [0, 1] there is in general no computable

rate convergence. However, a primitive recursive in the simple

form as mentioned above rate of metastability is extracted in

(K., Adv. Math. 2011).
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S. Reich’s Theorem

Even for Lp (1 < p <∞, p 6= 2) open until the celebrated:

Theorem (S. Reich, 1980)

In the framework above, if X is a uniformly smooth Banach

space, then for all x ∈ C we have that limt→1 xt := p exists and it

is a fixed point of T . Moreover p = QFix(T )x , where Q is the

unique sunny nonexpansive retraction onto Fix(T ).

Q = P iff X is a Hilbert space (Bruck 1974).

The convergence of numerous iterative algorithms in nonlinear

analysis is based on Reich’s theorem!
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Sunny nonexpansive retractions

Let E be a nonempty subset of C and Q : C → E . We call Q a

retraction if for all x ∈ E , Qx = x . If Q is a retraction, we call it

sunny if for all x ∈ C and t ≥ 0, Q(Qx + t(x − Qx)) = Qx .

Proposition (Variational Inequality)

A retraction Q : C → E is sunny and nonexpansive iff for all x ∈ C

and y ∈ E ,

〈x − Qx , j(y − Qx)〉 ≤ 0.

As a consequence, there is at most one sunny nonexpansive

retraction Q : C → E (Bruck 1973).

The existence of (sunny) nonexpansive retractions onto Fix(T )

was first shown by R. Bruck in 1971,1973 using Zorn’s lemma.
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One key step in the proof

Consider f : C → R+ with f (z) := lim supn→∞ ‖xn − z‖. Let K be

the set of minimizers of f . Claim: K ∩ Fix(T ) 6= ∅.

Since f is convex and continuous, C is closed convex bounded

nonempty, and X is uniformly smooth, hence reflexive, we have

that K 6= ∅. Let y ∈ K and z ∈ C . Then:

f (Ty) = lim sup
n→∞

‖xn − Ty‖ ≤ lim sup
n→∞

(‖xn − Txn‖+ ‖Txn − Ty‖)
≤ lim sup

n→∞
(‖xn − Txn‖+ ‖xn − y‖)

≤ lim sup
n→∞

‖xn − Txn‖+ lim sup
n→∞

‖xn − y‖
= f (y) ≤ f (z),

so Ty ∈ K . Since K is a closed convex bounded nonempty

T -invariant subset of a uniformly smooth space, there is a

p ∈ K ∩ Fix(T ).
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The proof gets somewhat easier if X is assumed to be also

uniformly convex (still covering Lp-spaces): only arbitrarily good

ε-minimizers needed.

Next: replace lim sup’s (⇔ACA) by approximate lim sup’s

(⇔ Π0
2-IA), in a process known as arithmetization (K.1996).

While the functional interpretation of the ε-minimization in general

requires Gödel primitive recursion of type 2 (T2) the actual

extraction constructs a rate of metastability in Φ ∈ T1 (i.e. of

Ackermann type).

It may well be that a closer analysis of of Φ shows that it is already

definable in T0 (in line with a classical result of Parsons that

certain forms of type-1 primitive recursion can be reduced to T0).
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Future of Proof Mining

Find new ‘organic connections’ (Kreisel) between core

mathematics and proof theory.

New classes of results rewarding for proof-theoretic analysis.

Proofs which use highly abstract ‘ideal’ principles to prove

concrete numerically meaningful results are most promising.

Built suitable local proof-theoretic methods to cover such

classes of proofs appropriately.

The area of analysis has been particularly fruitful. But other

promising areas: geometry, algebra (see Simmons/Towsner

Adv.Math.).
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