Cohesive powers of $\boldsymbol{\omega}$

Paul Shafer University of Leeds p.e.shafer@leeds.ac.uk http://www1.maths.leeds.ac.uk/~matpsh/

> Logic Colloquium 2019 Prague, Czech Republic August 12, 2019

> > Joint work with:

R. Dimitrov, V. Harizanov, A. Morozov, A. Soskova, and S. Vatev

Paul Shafer – Leeds

Cohesive powers of ω

Cohesive sets

Let

$$\vec{A} = (A_0, A_1, A_2, \dots)$$

be a countable sequence of subsets of \mathbb{N} .

Then there is an **infinite** set $C \subseteq \mathbb{N}$ such that, for every *i*:

either
$$C \subseteq^* A_i$$

or $C \subseteq^* \overline{A_i}$.

C is called **cohesive** for \vec{A} , or simply \vec{A} -cohesive.

If \vec{A} is the sequence of recursive sets, then C is called **r-cohesive**.

If \vec{A} is the sequence of r.e. sets, then C is called **cohesive**.

Skolem's countable non-standard model of true arithmetic

Skolem (1934):

Let ${\boldsymbol{C}}$ be cohesive for the sequence of arithmetical sets.

(Such a C is also called arithmetically indecomposable.)

Consider arithmetical functions $f, g \colon \mathbb{N} \to \mathbb{N}$. Define:

$$\begin{array}{lll} f =_C g & \text{if} & C \subseteq^* \{n : f(n) = g(n)\} \\ f < g & \text{if} & C \subseteq^* \{n : f(n) < g(n)\} \\ (f + g)(n) & = & f(n) + g(n) \\ (f \times g)(n) & = & f(n) \times g(n) \end{array}$$

Let $[f] = \{g : g =_C f\}$ denote the $=_C$ -equivalence class of f. Form a structure \mathfrak{M} with domain $\{[f] : f \text{ arithmetical}\}$ and [f] < [g] if f < g; [f] + [g] = [f + g]; $[f] \times [g] = [f \times g].$

Then \mathfrak{M} models true arithmetic!

Paul Shafer - Leeds

Effectivizing Skolem's construction

Tennenbaum wanted to know:

What if we did Skolem's construction, but

- used recursive functions $f \colon \mathbb{N} \to \mathbb{N}$ in place of arithmetical functions;
- only assumed that C is r-cohesive?

Do we still get models of true arithmetic?

Feferman-Scott-Tennenbaum (1959):

It is not even possible to get models of Peano arithmetic in this way.

Lerman (1970) has further results in this direction:

If you only consider **co-maximal** sets C, then the structure you get depends only on the many-one degree of C.

(Co-maximal means co-r.e. and cohesive.)

Dimitrov (2009):

Let ${\mathfrak A}$ be a computable structure.

- (i.e., ${\mathfrak A}$ has domain ${\mathbb N}$ and recursive functions and relations.)
- Let C be cohesive. Form the cohesive power $\Pi_C \mathfrak{A}$ of \mathfrak{A} by C:

Consider partial recursive $\varphi, \psi \colon \mathbb{N} \to \mathbb{N}$ with $C \subseteq^* \operatorname{dom}(\varphi)$. Define:

$$\begin{split} \varphi &=_C \psi & \text{if} & C \subseteq^* \{n : \varphi(n) = \psi(n)\} \\ R(\psi_0, \dots, \psi_{k-1}) & \text{if} & C \subseteq^* \{n : R(\psi_0(n), \dots, \psi_{k-1}(n))\} \\ F(\psi_0, \dots, \psi_{k-1})(n) & = & F(\psi_0(n), \dots, \psi_{k-1}(n)) \end{split}$$

Let $[\varphi]$ denote the $=_C$ -equivalence class of φ .

Let $\Pi_C\mathfrak{A}$ be the structure with domain $\{[\varphi]: C \subseteq^* \operatorname{dom}(\varphi)\}$ and

$$R([\psi_0], \dots, [\psi_{k-1}]) \text{ if } R(\psi_0, \dots, \psi_{k-1})$$

$$F([\psi_0], \dots, [\psi_{k-1}]) = [F(\psi_0, \dots, \psi_{k-1})].$$

A little Łoś

For cohesive powers:

- 1 Łoś's theorem holds for Σ_2 sentences and Π_2 sentences.
- 2 A one-way Łoś's theorem holds for Π_3 sentences.

Theorem (Łoś's theorem for cohesive powers; Dimitrov)

Let \mathfrak{A} be a computable structure, and let C be cohesive. Then

1 If θ is a Σ_2 sentence or a Π_2 sentence, then

 $\Pi_C \mathfrak{A} \models \theta \quad \text{ if and only if } \quad \mathfrak{A} \models \theta$

2 If θ is a Π_3 sentence, then

$$\Pi_C \mathfrak{A} \models \theta \quad implies \quad \mathfrak{A} \models \theta$$

A \mathbb{Q} uirky observation

Consider \mathbb{Q} as a linear order (i.e., as a structure in the language $\{<\}$.) \mathbb{Q} is a countable dense linear order without endpoints. If \mathfrak{L} is a countable dense linear order without endpoints, then $\mathfrak{L} \cong \mathbb{Q}$. "Dense linear order w/o endpoints" is axiomatized by a Π_2 sentence θ . If C is any cohesive set, then $\Pi_C \mathbb{Q} \models \theta$ by Łoś for cohesive powers. So $\Pi_C \mathbb{Q}$ is a countable dense linear order without endpoints. Thus $\Pi_C \mathbb{Q} \cong \mathbb{Q}$.

So it is possible for every cohesive power of \mathfrak{A} to be isomorphic to $\mathfrak{A}!$

(Not an accident: $\Pi_C \mathfrak{A}$ will be isomorphic to \mathfrak{A} whenever \mathfrak{A} is ultrahomogeneous in a sufficiently effective way.)

Paul Shafer – Leeds

Cohesive powers of $\boldsymbol{\omega}$

What about cohesive powers of \mathbb{N} ?

Terminology:

- Still considering linear orders (i.e., the language {<}).
- Let ' \mathbb{N} ' denote the usual presentation of \mathbb{N} .
- Say that £ is a recursive copy of N if £ is a recursive linear order and £ ≅ N (possibly by a non-recursive isomorphism).

Can check:

- If C is cohesive, then $\Pi_C \mathbb{N} \cong \mathbb{N} + (\mathbb{Q} \times \mathbb{Z}).$
- If C is cohesive and $\mathfrak{L} \cong \mathbb{N}$ via a recursive isomorphism, then $\Pi_C \mathfrak{L} \cong \mathbb{N} + (\mathbb{Q} \times \mathbb{Z}).$

(Recall that $\mathbb{N}+(\mathbb{Q}\times\mathbb{Z})$ is the order-type of countable non-standard models of PA.)

(Here, $\mathbb{Q} \times \mathbb{Z}$ denotes the lexicographic order on $\mathbb{Q} \times \mathbb{Z}$. I think $\mathbb{Q} \times \mathbb{Z}$ is easier to read than $\mathbb{Z}\mathbb{Q}$.)

Are there other cohesive powers of \mathbb{N} ?

More properly:

Is there a recursive copy \mathfrak{L} of \mathbb{N} with $\Pi_C \mathfrak{L} \ncong \mathbb{N} + (\mathbb{Q} \times \mathbb{Z})$?

Such an $\mathfrak L$ cannot be isomorphic to $\mathbb N$ via a recursive isomorphism.

Classic recursive copy $\mathfrak{L}=(\mathbb{N},\prec)$ of \mathbb{N} with non-recursive isomorphism:

- Let $f: \mathbb{N} \to \mathbb{N}$ be recursive injection with $\operatorname{ran}(f) = K = \{e: \Phi_e(e) \downarrow\}.$
- Put the evens in their usual order: $2a \prec 2b$ if 2a < 2b.
- For each s, put 2s + 1 between 2f(s) and 2f(s) + 2: $2f(s) \prec 2s + 1 \prec 2f(s) + 2$.

However:

With this example, we still get $\Pi_C \mathfrak{L} \cong \mathbb{N} + (\mathbb{Q} \times \mathbb{Z})$ for every cohesive C.

So it is not enough just to ensure that the isomorphism $\mathfrak{L}\cong\mathbb{N}$ is non-recursive!

Paul Shafer - Leeds

Theorem (D H M So Sh V)

For every co-r.e. cohesive set C, there is a recursive copy \mathfrak{L} of \mathbb{N} such that $\Pi_C \mathfrak{L} \ncong \mathbb{N} + (\mathbb{Q} \times \mathbb{Z}).$

Idea:

Build $\mathfrak{L} = (\mathbb{N}, \prec)$ so that [id] does **not** have an immediate successor in the cohesive power $\Pi_C \mathfrak{L}$.

To do this, ensure that $\varphi_e(n)$ is **not** the \prec -immediate successor of n for almost every $n \in C$:

 $\forall^{\infty} n \in C \ (\varphi_e(n) \downarrow \Rightarrow \varphi_e(n) \text{ is not the } \prec\text{-immeidate successor of } n)$

Then $[\varphi_e]$ is **not** the immediate successor of [id] in $\Pi_C \mathfrak{L}$.

Hints of the construction

C is co-r.e., so fix an infinite recursive $R \subseteq \overline{C}$.

The elements of R are **safe**:

It does not matter if $\varphi_e(n)$ is the \prec -immediate successor of n for $n \in R$ because these n are **not** in C.

Define $\mathfrak{L} = (\mathbb{N}, \prec)$ in stages.

At each stage, \prec will have been defined on a finite set.

At stage s:

- If \prec is not yet defined on s, make $s \prec$ -greatest of what we have so far.
- Examine the pairs $\langle e, n \rangle < s$. If
 - $n \notin R$,
 - $\varphi_{e,s}(n) \downarrow$,
 - $\varphi_e(n)$ is currently the $\prec\text{-immediate}$ successor of n, and
 - $n \text{ is not } \prec \text{-below any of } 0, 1, \dots, e$

then choose a fresh m from R and define $n \prec m \prec \varphi_e(n)$.

Making a mess of the non-standards

We can enhance the construction to make the non-standard elements of $\Pi_C \mathfrak{L}$ be \mathbb{Q} .

Theorem* (D H M So Sh V)

For every co-r.e. cohesive set C, there is a recursive copy $\mathfrak L$ of $\mathbb N$ such that

 $\Pi_C \mathfrak{L} \cong \mathbb{N} + \mathbb{Q}.$

(Theorem* is still being checked by some of the co-authors!)

This theorem leads to even more examples! (A min min q and q and

(Again given a co-r.e. cohesive C.)

- $\mathfrak{L} \times 2 \cong \mathbb{N}$ and $\Pi_C(\mathfrak{L} \times 2) \cong \mathbb{N} + (\mathbb{Q} \times 2)$
- For any finite sequence of finite linear orders L₀,..., L_n, there is a recursive copy ℑ of N with

 $\Pi_C \mathfrak{J} \cong \mathbb{N} + \text{the shuffle of } L_0, \ldots, L_n.$

Thank you for coming to my talk! Do you have a question about it?