Computable Reducibility, and Isomorphisms of Distributive Lattices

Nikolay Bazhenov

Joint work with Manat Mustafa and Mars Yamaleev

Sobolev Institute of Mathematics, Novosibirsk, Russia

Logic Colloquium 2019

Computable reducibility

In the talk, we consider equivalence relations on the domain \mathbb{N} .

Let E and F be equivalence relations. The relation E is **computably reducible** to F, denoted by $E \leq_c F$, if there is a total computable function $f \colon \mathbb{N} \to \mathbb{N}$ such that for any $m, n \in \mathbb{N}$,

$$(m E n) \Leftrightarrow (f(m) F f(n)).$$

The systematic study of computable reducibility was initiated by Ershov (1971). His approach stems from the theory of numberings.

(i) On one hand, computable reducibility is a *stronger* version of *m*-reducibility.

Let $A, B \subseteq \mathbb{N}$. Recall that $A \leq_m B$ if there is a total computable function f(x) such that for all $x \in \mathbb{N}$,

$$x \in A \Leftrightarrow f(x) \in B.$$

(ii) On the other hand, one can treat computable reducibility as an effective version of Borel reducibility.

Let X and Y be Polish spaces. Suppose that R and S are equivalence relations on X and Y, respectively. Then R is Borel reducible to S if there is a Borel map $f: X \to Y$ such that for all $x, y \in X$,

$$(x \, R \, y) \ \Leftrightarrow \ (f(x) \, S \, f(y)).$$

Computable reducibility for ceers

An equivalence relation E is a *ceer* if E is computably enumerable.

By Id we denote the identity relation on $\mathbb N.$ For a number $n\geq 1,$

$$\mathrm{Id}_n = \{(x, y) : n \text{ divides } (x - y)\}.$$

- ► Any ceer with precisely n equivalence classes is c-equivalent to Id_n.
- Every Id_n is c-reducible to any ceer with infinitely many classes.
- ► There exists a *universal ceer*, i.e. a ceer U such that E ≤_c U for any ceer E.
- The poset of the *c*-degrees of ceers is neither an upper semilattice, nor a lower semilattice [Andrews, Lempp, J. Miller, Ng, San Mauro, and Sorbi 2014].

For a computable signature L, one can identify first-order L-formulas with their Gödel numbers.

Let T be a first-order L-theory. Then the provable equivalence in T is defined as follows. For L-sentences ϕ and ψ ,

 $\phi \sim_T \psi \iff T \vdash (\phi \leftrightarrow \psi).$

Theorem (Bernardi and Sorbi 1983)

The relation of provable equivalence in Peano arithmetic is a universal ceer.

Γ -completeness

Let Γ be a complexity class (e.g., Σ_1^0 , d- Σ_1^0 , or Σ_n^0). We say that an equivalence relation R is Γ -complete (for computable reducibility) if:

- ▶ $R \in \Gamma$, and
- ▶ for any equivalence relation $E \in \Gamma$, we have $E \leq_c R$.

Note that the notions of a universal ceer and a $\Sigma^0_1\text{-complete}$ equivalence relation are synonymous.

$\Gamma\text{-completeness}$

Let Γ be a complexity class (e.g., Σ_1^0 , d- Σ_1^0 , or Σ_n^0). We say that an equivalence relation R is Γ -complete (for computable reducibility) if:

- ▶ $R \in \Gamma$, and
- ▶ for any equivalence relation $E \in \Gamma$, we have $E \leq_c R$.

Note that the notions of a universal ceer and a $\Sigma^0_1\text{-complete}$ equivalence relation are synonymous.

Fact (folklore)

Let $X\subseteq \mathbb{N}$ be an oracle. Then there exists a $\Sigma^0_1(X)\text{-complete}$ equivalence relation.

Proposition (Ianovski, R. Miller, Ng, and Nies 2014)

There exists a Π_1^0 -complete equivalence relation. For any oracle X, there is no $\Pi_2^0(X)$ -complete equivalence relation.

Let $a \in \mathcal{O}$. Recall that a set $A \subseteq \mathbb{N}$ is Σ_a^{-1} if there exist total computable functions f(x,s) and g(x,s) such that for all x and s, (a) f(x,0) = 0 and $\lim_t f(x,t) = A(x)$; (b) g(x,0) = a and $g(x,s+1) \leq_{\mathcal{O}} g(x,s)$; (c) if $f(x,s+1) \neq f(x,s)$, then $g(x,s+1) \neq g(x,s)$.

A set B is Π_a^{-1} if its complement $(\mathbb{N} \setminus B)$ is Σ_a^{-1} .

Proposition (Ng and Yu; B. and Kalmurzaev)

Suppose that $a \in \mathcal{O}$ and $|a|_{\mathcal{O}} \ge 1$. Then there are a Σ_a^{-1} -complete and a Π_a^{-1} -complete equivalence relations.

Problem Find natural examples of Γ -complete equivalence relations.

 Γ -complete equivalence relations in recursion theory

Recall that for a natural number $e, W_e = \{x \in \mathbb{N} : \varphi_e(x) \downarrow\}$. Thus, one can treat, say, *m*-equivalence on c.e. sets as a relation on their indices: $i \sim_m j \Leftrightarrow W_i \equiv_m W_j$.

 Γ -complete equivalence relations:

- (1) 1-equivalence and *m*-equivalence on c.e. sets are both Σ_3^0 -complete.
- (2) Turing equivalence on c.e. sets is Σ_4^0 -complete.

(1) Fokina, S.-D. Friedman, and Nies 2012

(2) Ianovski, R. Miller, Ng, and Nies 2014

 $\Gamma\text{-}\mathrm{complete}$ equivalence relations in recursion theory

- (3) For every $n \in \mathbb{N}$, 1-equivalence on (indices of) $\emptyset^{(n+1)}$ -c.e. sets is Σ_{n+4}^0 -complete.
- (4) Fix an effective listing $(A_e)_{e\in\mathbb{N}}$ of all quadratic time computable languages $A\subseteq\{0,1\}^*$. Then the relation of almost equality

$$\{(i,j): A_i =^* A_j\}$$

is Σ_2^0 -complete.

(3)-(4) Ianovski, R. Miller, Ng, and Nies 2014

Computable structures and their indices

Recall that a number $e \in \mathbb{N}$ is a *computable index* of a computable *L*-structure S if the characteristic function of the atomic diagram D(S) is equal to the partial computable function φ_{e} .

Thus, we can *identify* computable structures and their indices.

The isomorphism relation

Theorem (Fokina, S.-D. Friedman, Harizanov, Knight, McCoy, and Montalbán 2012)

For each of the following classes K of computable structures, the isomorphism relation on K is a Σ_1^1 -complete equivalence relation:

- trees,
- graphs,
- torsion-free abelian groups,
- abelian p-groups,
- fields of any given characteristic,
- ▶ linear orders.

Hyperarithmetic isomorphism

Theorem (Greenberg and Turetsky)

The hyperarithmetic isomorphism relation among computable structures is a Π_1^1 -complete equivalence relation.

Computable isomorphism

Theorem (Fokina, S.-D. Friedman, and Nies 2012)

For each of the following classes K of computable structures, the computable isomorphism relation on K is a Σ_3^0 -complete equivalence relation:

- trees,
- equivalence structures,
- Boolean algebras.

Δ^0_{α} isomorphism

Theorem 1

Let α be a computable successor ordinal. For each of the following classes K of computable structures, the relation of Δ^0_{α} isomorphism is a $\Sigma^0_{\alpha+2}$ -complete equivalence relation:

- distributive lattices,
- Heyting algebras,
- undirected graphs.

Proof sketch for $\alpha=2$

(i) Any Σ_2^0 set $A\subseteq \mathbb{N}$ can be encoded via a computable sequence of linear orders

$$\mathcal{L}_n \cong \begin{cases} \omega + 1, & \text{if } n \notin A, \\ \omega + 2, & \text{if } n \in A. \end{cases}$$

This encoding is uniform in indices of Σ_2^0 sets.

(ii) Given an arbitrary Σ_2^0 equivalence relation E, one can produce a computable function g(x) with the following property: $(x \, E \, y)$ iff there is a \emptyset' -computable permutation σ of $\mathbb N$ such that $\sigma(W_{g(x)}^{\emptyset'}) = W_{g(y)}^{\emptyset'}.$

(iii) After that, a set $W_{g(x)}^{\emptyset'}$, where $x \in \mathbb{N}$, is encoded via the sequence of linear orders from above. A computable distributive lattice \mathcal{C}_x is defined as the direct sum of this sequence.

One can show that (x E y) iff C_x and C_y are Δ_2^0 isomorphic.

Arithmetic isomorphism

Theorem 2

The relation of arithmetic isomorphism among computable partial orders is a Σ^0_{ω} -complete equivalence relation.

We conjecture that one can generalize the result as follows: Let λ be a computable limit ordinal. Then

(being isomorphic via a function
$$f\in igcup_{lpha<\lambda}\Delta^0_lpha ig)$$
 is Σ^0_λ -complete.

References

- ► E. Fokina, S.-D. Friedman, and A. Nies, Equivalence relations that are ∑₃⁰ complete for computable reducibility, in: Logic, Language, Information and Computation; LNCS, 2012, vol. 7456, 26–33.
- N. Bazhenov, M. Mustafa, and M. Yamaleev, Computable isomorphisms of distributive lattices, in: Theory and Applications of Models of Computation; LNCS, 2019, vol. 11436, 28–41.