About Rogers semilattices of finite families in Ershov hierarchy

Sergey Ospichev Joint work with Nikolay Bazhenov and Manat Mustafa Prague, 2019

- Let ${\mathcal S}$ be countable set. Any surjective map from ω onto ${\mathcal S}$ we will call a numbering.
- Goncharov-Sorbi approach:

Numbering η is called Γ -computable, if set $\{ < x, y > | y \in \eta_x \} \in \Gamma$

 $Com_{\Gamma}(S)$ – family of all Γ -computable numberings of S. $\mu \leq \nu$ if there is computable function f and $\mu(x) = \nu(f(x))$. $\langle Com_{\Gamma}(S)/_{\equiv}, \leq \rangle$ – Rogers semilattice $\mathcal{R}_{\Gamma}(S)$.

Any member of a greatest element of $\mathcal{R}_{\Gamma}(\mathcal{S})$ we will call a *principal* Γ -computable numbering.

$$A \text{ is } \Sigma_n^{-1}\text{-set, if } A(x) = \lim_s A(x,s), \ A(x,0) = 0 \text{ and} \\ |\{s|A(x,s) \neq A(x,s+1)\}| \le n$$

Let \mathcal{O} be Kleene ordinal notation system, $A \subseteq \omega$ and a is notation for ordinal α in \mathcal{O} .

For all $a \in O$ set A is Σ_a^{-1} -set if there exist total computable function f(x,s) and partial computable function g(x,s) and for all $x \in \omega$:

1.
$$A(x) = \lim_{s} f(x, s), \ f(x, 0) = 0;$$

2. $g(x, s) \downarrow \to g(x, s+1) \downarrow \leq_{o} g(x, s) <_{o} a;$
3. $f(x, s) \neq f(x, s+1) \to g(x, s+1) \downarrow \neq g(x, s).$

Theorem (Herbert, Jain, Lempp, Mustafa, Stephan) There is an operator \mathcal{E} that for any Σ_n^{-1} -computable family \mathcal{S} , $\mathcal{E}(\mathcal{S})$ is Σ_{n+1}^{-1} -computable family, and $\mathcal{R}_n^{-1}(\mathcal{S})$ is isomorphic to $\mathcal{R}_{n+1}^{-1}(\mathcal{E}(\mathcal{S}))$

Theorem (Lachlan) Any finite family of c.e. sets has a computable principal numbering.

Theorem (Badaev,Goncharov, Sorbi) Let S be any finite \sum_{n+2}^{0} -computable family of sets. S has a \sum_{n+2}^{0} -computable principal numbering if and only if there is least set under inclusion in S.

Theorem (Abeshev) There is a family $S = \{A, B\}$ of disjoint Σ_2^{-1} -sets without Σ_2^{-1} -computable principal numbering.

Proposition

For any ordinal notation $a >_{\mathcal{O}} 2$, any finite family of effective disjoint Σ_2^{-1} -sets has a Σ_a^{-1} -computable principal numbering.

Here sets are effective disjoint, when sets $\{x| \exists sf(x,s)=1\}$ are disjoint.

Theorem (Bazhenov, Mustafa, O.) For any ordinal notation a of a non-zero ordinal, any family $S = \{A, B\}$ of c.e. sets has a Σ_a^{-1} -computable principal numbering. **Proposition (Bazhenov, Mustafa, O.)** Let $S = \{A, B\}$ be a family of c.e. sets with $A \subset B$, $B \setminus A$ is not c.e. Then any Σ_{2n+2}^{-1} -computable numbering of S is equivalent to some Σ_{2n+1}^{-1} -computable numbering of S.

The same goes for family $\{\emptyset, B \setminus A\}$ and the levels 2n and 2n + 1.

Lemma (Lachlan) Family S of c.e. sets has a computable principal numbering if and only if $S \setminus \{\emptyset\}$ has one too. Let $\mathcal{P} = \langle P, \leq_P \rangle$ be a finite partially ordered set. Let $\check{p} = \{x | p \leq_P x\}$. We will call a family $\{F_p\}_{p \in \mathcal{P}}$ of non empty Σ_a^{-1} -sets acceptable if $F_{p_1} \bigcap F_{p_2} = \bigcup_{q \in \check{p}_1 \cap \check{p}_2} F_q$ for any $p_1, p_2 \in \mathcal{P}$.

Theorem (Bazhenov, Mustafa, O.) Let a be the ordinal notation of nonzero ordinal. For any finite partially ordered set \mathcal{P} and any acceptable family $\{F_p\}_{p\in\mathcal{P}}$, there is Σ_a^{-1} -computable principal numbering of family $\{F_p\}_{p\in\mathcal{P}} \bigcup \{\emptyset\}$ **Corollary** Let S be a finite family of disjoint Σ_a^{-1} -sets, there is Σ_a^{-1} -computable principal numbering of family $S \bigcup \{\emptyset\}$

Corollary Let $S = \{ \emptyset \subset A_1 \subset \cdots \subset A_n \}$ be a finite family of Σ_a^{-1} -sets, then there is Σ_a^{-1} -computable principal numbering of S

Thanks for your attention!

