Perfect Sets and Games on Generalized Baire Spaces

Dorottya Sziráki

MTA Alfréd Rényi Institute of Mathematics

Logic Colloquium 2019 Prague 16 August 2019 Let κ be an uncountable cardinal such that $\kappa^{<\kappa} = \kappa$.

The κ -Baire space $\kappa \kappa$ is the set of functions $f : \kappa \to \kappa$, with the bounded topology: basic open sets are of the form

$$N_s = \{ f \in {}^{\kappa}\kappa : s \subset f \}, \quad \text{where } s \in {}^{<\kappa}\kappa.$$

Let κ be an uncountable cardinal such that $\kappa^{<\kappa} = \kappa$.

The κ -Baire space $\kappa \kappa$ is the set of functions $f : \kappa \to \kappa$, with the bounded topology: basic open sets are of the form

$$N_s = \{ f \in {}^{\kappa}\kappa : s \subset f \}, \quad \text{where } s \in {}^{<\kappa}\kappa.$$

The κ -Cantor space $\kappa 2$ is defined similarly.

Let κ be an uncountable cardinal such that $\kappa^{<\kappa} = \kappa$.

The κ -Baire space $\kappa \kappa$ is the set of functions $f : \kappa \to \kappa$, with the bounded topology: basic open sets are of the form

$$N_s = \{ f \in {}^{\kappa}\kappa : s \subset f \}, \quad \text{where } s \in {}^{<\kappa}\kappa.$$

The κ -Cantor space $\kappa 2$ is defined similarly.

 κ -Borel sets: close the family of open subsets under intersections and unions of size $\leq \kappa$ and complementation.

Definition (Väänänen, 1991)

Ι

Let $X \subseteq {}^{\kappa}\kappa$, let $x_0 \in {}^{\kappa}\kappa$ and let $\omega \leq \gamma \leq \kappa$. The game $\mathcal{V}_{\gamma}(X, x_0)$ has length γ and is played as follows:

II x_0 x_1 ... x_{α} ... II first plays x_0 . In each round $0 < \alpha < \gamma$, I plays a basic open subset U_{α} of X, and then II chooses

 $U_1 \qquad \dots \qquad U_{\alpha} \qquad \dots$

$$x_{\alpha} \in U_{\alpha}$$
 with $x_{\alpha} \neq x_{\beta}$ for all $\beta < \alpha$.

I has to play so that $U_{\beta+1} \ni x_{\beta}$ in each successor round $\beta + 1 < \gamma$ and $U_{\alpha} = \bigcap_{\beta < \alpha} U_{\beta}$ in each limit round $\alpha < \gamma$.

 ${f II}$ wins a given run of the game if she can play legally in all rounds $lpha<\gamma$

Definition (Väänänen, 1991)

Let $X \subseteq {}^{\kappa}\kappa$, let $x_0 \in {}^{\kappa}\kappa$ and let $\omega \leq \gamma \leq \kappa$. The game $\mathcal{V}_{\gamma}(X, x_0)$ has length γ and is played as follows:

I $U_1 \dots U_{\alpha} \dots$ II $x_0 \dots x_1 \dots x_{\alpha} \dots$ II first plays x_0 . In each round $0 < \alpha < \gamma$, I plays a basic open subset U_{α} of X, and then II chooses

$$x_{\alpha} \in U_{\alpha}$$
 with $x_{\alpha} \neq x_{\beta}$ for all $\beta < \alpha$.

I has to play so that $U_{\beta+1} \ni x_{\beta}$ in each successor round $\beta + 1 < \gamma$ and $U_{\alpha} = \bigcap_{\beta < \alpha} U_{\beta}$ in each limit round $\alpha < \gamma$.

 ${f II}$ wins a given run of the game if she can play legally in all rounds $lpha<\gamma$

Definition (Väänänen, 1991)

Let $X \subseteq {}^{\kappa}\kappa$, let $x_0 \in {}^{\kappa}\kappa$ and let $\omega \leq \gamma \leq \kappa$. The game $\mathcal{V}_{\gamma}(X, x_0)$ has length γ and is played as follows:

I U_1 ... U_{α} ... II x_0 x_1 ... x_{α} ... II first plays x_0 . In each round $0 < \alpha < \gamma$, I plays a basic open subset U_{α} of X, and then II chooses

$$x_{\alpha} \in U_{\alpha}$$
 with $x_{\alpha} \neq x_{\beta}$ for all $\beta < \alpha$.

I has to play so that $U_{\beta+1} \ni x_{\beta}$ in each successor round $\beta + 1 < \gamma$ and $U_{\alpha} = \bigcap_{\beta < \alpha} U_{\beta}$ in each limit round $\alpha < \gamma$.

II wins a given run of the game if she can play legally in all rounds $\alpha < \gamma$.

- Let $X \subseteq {}^{\kappa}\kappa$, and suppose $\omega \leq \gamma \leq \kappa$.
- Definition (Väänänen, 1991)
- X is a γ -scattered set if I wins $\mathcal{V}_{\gamma}(X, x_0)$ for all $x_0 \in X$.
- X is a γ -perfect set if X is closed and II wins $\mathcal{V}_{\gamma}(X, x_0)$ for all $x_0 \in X$.

Let $X \subseteq {}^{\kappa}\kappa$, and suppose $\omega \leq \gamma \leq \kappa$.

Definition (Väänänen, 1991)

X is a γ -scattered set if I wins $\mathcal{V}_{\gamma}(X, x_0)$ for all $x_0 \in X$.

X is a γ -perfect set if X is closed and II wins $\mathcal{V}_{\gamma}(X, x_0)$ for all $x_0 \in X$.

• X is ω-perfect iff X is perfect in the usual sense (i.e., iff X closed and has no isolated points).

Let $X \subseteq {}^{\kappa}\kappa$, and suppose $\omega \leq \gamma \leq \kappa$.

Definition (Väänänen, 1991)

X is a γ -scattered set if I wins $\mathcal{V}_{\gamma}(X, x_0)$ for all $x_0 \in X$.

X is a γ -perfect set if X is closed and II wins $\mathcal{V}_{\gamma}(X, x_0)$ for all $x_0 \in X$.

- X is ω -perfect iff X is perfect in the usual sense (i.e., iff X closed and has no isolated points).
- X is ω -scattered iff X is scattered in the usual sense (i.e., each nonempty subspace contains an isolated point).

Let $X \subseteq {}^{\kappa}\kappa$, and suppose $\omega \leq \gamma \leq \kappa$.

Definition (Väänänen, 1991)

X is a γ -scattered set if I wins $\mathcal{V}_{\gamma}(X, x_0)$ for all $x_0 \in X$.

X is a γ -perfect set if X is closed and II wins $\mathcal{V}_{\gamma}(X, x_0)$ for all $x_0 \in X$.

- X is ω-perfect iff X is perfect in the usual sense (i.e., iff X closed and has no isolated points).
- X is ω -scattered iff X is scattered in the usual sense (i.e., each nonempty subspace contains an isolated point).
- $\mathcal{V}_{\gamma}(X, x_0)$ may not be determined when $\gamma > \omega$.

A subset of $\kappa \kappa$ is closed iff it is the set of branches

$$[T] = \{ x \in {}^{\kappa}\kappa : x \restriction \alpha \in T \text{ for all } \alpha < \kappa \}$$

of a subtree T of ${}^{<\kappa}\kappa$.

A subset of $\kappa \kappa$ is closed iff it is the set of branches

$$[T] = \{ x \in {}^{\kappa}\kappa : x \restriction \alpha \in T \text{ for all } \alpha < \kappa \}$$

of a subtree T of ${}^{<\kappa}\kappa$.

Definition

A subtree T of ${}^{<\kappa}\kappa$ is a strongly κ -perfect tree if T is $<\kappa$ -closed and every node of T extends to a splitting node.

A subset of $\kappa \kappa$ is closed iff it is the set of branches

$$[T] = \{ x \in {}^{\kappa}\kappa : x \restriction \alpha \in T \text{ for all } \alpha < \kappa \}$$

of a subtree T of ${}^{<\kappa}\kappa$.

Definition

A subtree T of ${}^{<\kappa}\kappa$ is a strongly κ -perfect tree if T is $<\kappa$ -closed and every node of T extends to a splitting node.

A set $X \subseteq {}^{\kappa}\kappa$ is a strongly κ -perfect set if X = [T] for a strongly κ -perfect tree T.

A subset of $\kappa \kappa$ is closed iff it is the set of branches

$$[T] = \{ x \in {}^{\kappa}\kappa : x \restriction \alpha \in T \text{ for all } \alpha < \kappa \}$$

of a subtree T of ${}^{<\kappa}\kappa$.

Definition

A subtree T of ${}^{<\kappa}\kappa$ is a strongly κ -perfect tree if T is $<\kappa$ -closed and every node of T extends to a splitting node.

A set $X \subseteq {}^{\kappa}\kappa$ is a strongly κ -perfect set if X = [T] for a strongly κ -perfect tree T.

Example (Huuskonen)

The following set is κ -perfect but is not strongly κ -perfect:

$$Y_{\omega} = \{x \in {}^{\kappa}3: |\{\alpha < \kappa: x(\alpha) = 2\}| < \omega\}.$$

A subset of $\kappa \kappa$ is closed iff it is the set of branches

$$[T] = \{ x \in {}^{\kappa}\kappa : x \restriction \alpha \in T \text{ for all } \alpha < \kappa \}$$

of a subtree T of ${}^{<\kappa}\kappa$.

Definition

A subtree T of ${}^{<\kappa}\kappa$ is a strongly κ -perfect tree if T is $<\kappa$ -closed and every node of T extends to a splitting node.

A set $X \subseteq {}^{\kappa}\kappa$ is a strongly κ -perfect set if X = [T] for a strongly κ -perfect tree T.

Proposition

Let X be a closed subset of $\kappa \kappa$.

$$X \text{ is } \kappa\text{-perfect} \iff X = \bigcup_{i \in I} X_i \text{ for strongly } \kappa\text{-perfect sets } X_i.$$

Let T be a subtree of ${}^{<\kappa}2$, let $t \in T$, and let $\omega \leq \gamma \leq \kappa$. The game $\mathcal{G}_{\gamma}(T,t)$ has length γ and is played as follows:

 $t_{\beta} (i_{\beta}) \subseteq t_{\alpha}$ for all $\beta < \alpha < \gamma$.

 ${f II}$ wins a given run of the game if she can play legally in all rounds $lpha<\gamma$

T is a γ -scattered tree if I wins $\mathcal{G}_{\gamma}(T,t)$ for all $t \in T$.

Let T be a subtree of ${}^{<\kappa}2$, let $t \in T$, and let $\omega \leq \gamma \leq \kappa$. The game $\mathcal{G}_{\gamma}(T,t)$ has length γ and is played as follows:

 $t_{\beta} (i_{\beta}) \subseteq t_{\alpha}$ for all $\beta < \alpha < \gamma$.

 ${f II}$ wins a given run of the game if she can play legally in all rounds $lpha<\gamma$

T is a γ -scattered tree if I wins $\mathcal{G}_{\gamma}(T,t)$ for all $t \in T$.

Let T be a subtree of ${}^{<\kappa}2$, let $t \in T$, and let $\omega \leq \gamma \leq \kappa$. The game $\mathcal{G}_{\gamma}(T,t)$ has length γ and is played as follows:

 $t_{\beta} (i_{\beta}) \subseteq t_{\alpha}$ for all $\beta < \alpha < \gamma$.

II wins a given run of the game if she can play legally in all rounds $\alpha < \gamma$.

T is a γ -scattered tree if I wins $\mathcal{G}_{\gamma}(T,t)$ for all $t \in T$.

Let T be a subtree of ${}^{<\kappa}2$, let $t \in T$, and let $\omega \leq \gamma \leq \kappa$. The game $\mathcal{G}_{\gamma}(T,t)$ has length γ and is played as follows:

$$t_{\beta} \widehat{\langle} i_{\beta} e \subseteq t_{\alpha}$$
 for all $\beta < \alpha < \gamma$.

II wins a given run of the game if she can play legally in all rounds $\alpha < \gamma$.

T is a γ -scattered tree if I wins $\mathcal{G}_{\gamma}(T,t)$ for all $t \in T$.

Let T be a subtree of ${}^{<\kappa}2$, let $t \in T$, and let $\omega \leq \gamma \leq \kappa$. The game $\mathcal{G}_{\gamma}(T,t)$ has length γ and is played as follows:

$$t_{\beta} \widehat{\langle} i_{\beta} \widehat{\rangle} \subseteq t_{\alpha}$$
 for all $\beta < \alpha < \gamma$.

II wins a given run of the game if she can play legally in all rounds $\alpha < \gamma$.

T is a γ -scattered tree if I wins $\mathcal{G}_{\gamma}(T,t)$ for all $t \in T$.

Proposition

Let T be a subtree of ${}^{<\kappa}\kappa$.

 $T is a \kappa-perfect tree \iff [T] is a \kappa-perfect set.$

Proposition

Let T be a subtree of ${}^{<\kappa}\kappa$.

- $T is a \kappa perfect tree \iff [T] is a \kappa perfect set.$
- If the κ-perfect set property holds for closed subsets of ^κκ (i.e., every closed subset of size > κ has a κ-perfect subset), then

T is a κ -scattered tree \iff [T] is a κ -scattered set.

Proposition

Let T be a subtree of ${}^{<\kappa}\kappa$.

- $T is a \kappa perfect tree \iff [T] is a \kappa perfect set.$
- If the κ-perfect set property holds for closed subsets of ^κκ (i.e., every closed subset of size > κ has a κ-perfect subset), then

T is a κ -scattered tree \iff [T] is a κ -scattered set.

Remark: The κ -PSP for closed subsets of $\kappa \kappa$ is equiconsistent with the existence of an inaccessible cardinal $\lambda > \kappa$.

- Let T be a subtree of ${}^{<\kappa}\kappa$ and let $\omega \leq \gamma \leq \kappa$.
 - If [T] is a γ -perfect set, then T is a γ -perfect tree.

Let T be a subtree of ${}^{<\kappa}\kappa$ and let $\omega \leq \gamma \leq \kappa$.

- If [T] is a γ -perfect set, then T is a γ -perfect tree.
- **2** If T is a γ -scattered tree, then [T] is a γ -scattered set.

Let T be a subtree of ${}^{<\kappa}\kappa$ and let $\omega \leq \gamma \leq \kappa$.

- If [T] is a γ -perfect set, then T is a γ -perfect tree.
- **2** If T is a γ -scattered tree, then [T] is a γ -scattered set.
- If κ is weakly compact and $T \subseteq {}^{<\kappa}2$, then

T is a γ -perfect tree \iff [T] is a γ -perfect set.

Let T be a subtree of ${}^{<\kappa}\kappa$ and let $\omega \leq \gamma \leq \kappa$.

- If [T] is a γ -perfect set, then T is a γ -perfect tree.
- **2** If T is a γ -scattered tree, then [T] is a γ -scattered set.
- If κ is weakly compact and $T \subseteq {}^{<\kappa}2$, then
 - $T \text{ is a } \gamma \text{-perfect tree} \quad \Longleftrightarrow \quad [T] \text{ is a } \gamma \text{-perfect set}.$

More generally: this holds if κ has the tree property and T is a κ -tree.

Let T be a subtree of ${}^{<\kappa}\kappa$ and let $\omega \leq \gamma \leq \kappa$.

- If [T] is a γ -perfect set, then T is a γ -perfect tree.
- **2** If T is a γ -scattered tree, then [T] is a γ -scattered set.
- If κ is weakly compact and $T \subseteq {}^{<\kappa}2$, then
 - $T \text{ is a } \gamma \text{-perfect tree} \quad \Longleftrightarrow \quad [T] \text{ is a } \gamma \text{-perfect set}.$

More generally: this holds if κ has the tree property and T is a κ -tree.

Question

Is it consistent that 3 holds for "scattered" instead of "perfect"?

An analogue of the previous theorem holds for the levels of the "generalized Cantor-Bendixson hierarchies" associated to subsets of $\kappa \kappa$ and to subtrees of $\kappa \kappa$.

• See the next 3 slides for definitions and a precise statement this theorem.

An analogue of the previous theorem holds for the levels of the "generalized Cantor-Bendixson hierarchies" associated to subsets of $\kappa \kappa$ and to subtrees of $\kappa \kappa$.

- See the next 3 slides for definitions and a precise statement this theorem.
- Generalized Cantor-Bendixson hierarchies can be defined for subsets of ${}^{\kappa}\kappa$ and for subtrees of ${}^{<\kappa}\kappa$, using modifications of Väänänen's and Galgon's games.
- For subtrees of ${}^{<\kappa}\kappa,$ modifications of a game equivalent to $\mathcal{G}_{\gamma}(T,t)$ need to be used.

Definition (Hyttinen; Väänänen)

Let $X \subseteq {}^{\kappa}\kappa$, let $x_0 \in {}^{\kappa}\kappa$, and let S be a tree without branches of length $\geq \kappa$. The S-approximation $\mathcal{V}_S(X, x_0)$ of $\mathcal{V}_{\kappa}(X, x_0)$ is the following game.

I
$$s_1, U_1$$
 ... s_{α}, U_{α} ...
II x_0 x_1 ... x_{α} ...

In each round $\alpha > 0$, I first plays $s_{\alpha} \in S$ such that $s_{\alpha} >_{S} s_{\beta}$ for all $0 < \beta < \alpha$. Then I plays U_{α} and II plays x_{α} according to the same rules as in $\mathcal{V}_{\kappa}(X, x_{0})$. The first player who can not move loses, and the other player wins.

Definition (Hyttinen; Väänänen)

Let $X \subseteq {}^{\kappa}\kappa$, let $x_0 \in {}^{\kappa}\kappa$, and let S be a tree without branches of length $\geq \kappa$. The S-approximation $\mathcal{V}_S(X, x_0)$ of $\mathcal{V}_{\kappa}(X, x_0)$ is the following game.

$$\mathbf{I} \qquad s_1, U_1 \qquad \dots \qquad s_{\alpha}, U_{\alpha} \qquad \dots$$
$$\mathbf{II} \qquad x_0 \qquad x_1 \qquad \dots \qquad x_{\alpha} \qquad \dots$$

In each round $\alpha > 0$, I first plays $s_{\alpha} \in S$ such that $s_{\alpha} >_{S} s_{\beta}$ for all $0 < \beta < \alpha$. Then I plays U_{α} and II plays x_{α} according to the same rules as in $\mathcal{V}_{\kappa}(X, x_{0})$. The first player who can not move loses, and the other player wins. Let

$$Sc_S(X) = \{x \in X : \mathbf{I} \text{ wins } \mathcal{V}_S(X, x)\};$$
$$Ker_S(X) = \{x \in {}^{\kappa}\kappa : \mathbf{II} \text{ wins } \mathcal{V}_S(X, x)\}$$

1

Definition (Hyttinen; Väänänen)

Let $X \subseteq {}^{\kappa}\kappa$, let $x_0 \in {}^{\kappa}\kappa$, and let S be a tree without branches of length $\geq \kappa$. The S-approximation $\mathcal{V}_S(X, x_0)$ of $\mathcal{V}_{\kappa}(X, x_0)$ is the following game.

$$\mathbf{I} \qquad s_1, U_1 \qquad \dots \qquad s_\alpha, U_\alpha \qquad \dots$$
$$\mathbf{II} \qquad x_0 \qquad x_1 \qquad \dots \qquad x_\alpha \qquad \dots$$

In each round $\alpha > 0$, I first plays $s_{\alpha} \in S$ such that $s_{\alpha} >_{S} s_{\beta}$ for all $0 < \beta < \alpha$. Then I plays U_{α} and II plays x_{α} according to the same rules as in $\mathcal{V}_{\kappa}(X, x_{0})$. The first player who can not move loses, and the other player wins. Let

$$Sc_S(X) = \{x \in X : \mathbf{I} \text{ wins } \mathcal{V}_S(X, x)\};$$
$$Ker_S(X) = \{x \in {}^{\kappa}\kappa : \mathbf{II} \text{ wins } \mathcal{V}_S(X, x)\}$$

The sets $X \cap \text{Ker}_S(X)$ (resp. $X - \text{Sc}_S(X)$) can be seen as the "levels of a generalized Cantor-Bendixson hierarchy" for the set X associated to II (resp. I).¹

¹For a precise verison of this statement, see: J. Väänänen. A Cantor-Bendixson theorem for the space $\omega_1^{\omega_1}$. Fund. Math. 137:187–199, 1991.

Proposition (Sz.)

There exists a family

 $\{\mathcal{G}'_{\kappa}(T,t): T \text{ is a subtree of } ^{<\kappa}\kappa, t \in T \text{ and } \omega \leq \gamma \leq \kappa\}$

of games such that the following hold for all T, t and $\gamma.$

- The games $\mathcal{G}'_{\gamma}(T,t)$ and $\mathcal{G}_{\gamma}(T,t)$ are equivalent whenever $T \subseteq {}^{<\kappa}2$.
- Given a tree S without branches of length $\geq \kappa$, let $\mathcal{G}'_S(T,t)$ denote the S-approximation of $\mathcal{G}'_{\kappa}(T,t)$ (this is defined analogously to the S-approximations $\mathcal{V}_S(T,x)$). Let

 $\operatorname{Sc}_{S}(T) = \{t \in T : \mathbf{I} \text{ wins } \mathcal{G}'_{S}(T,t)\};$

 $\operatorname{Ker}_{S}(T) = \{t \in T : \mathbf{II} \text{ wins } \mathcal{G}'_{S}(T, t)\}.$

Then $\operatorname{Ker}_{S}(T)$ (resp. $T - \operatorname{Sc}_{S}(T)$) generalize the levels of the Cantor-Bendixson hierarchy for T which was defined by Galgon, for II (resp. I).²

² In the same sense that $X \cap \operatorname{Ker}_{S}(X)$ (resp. $X - \operatorname{Sc}_{S}(X)$) generalize the levels of the Cantor-Bendixson hierarchy for X, for II (resp. I).

Theorem (Sz; precise version of previous theorem)

Let T be a subtree of ${}^{<\kappa}\kappa$; let S be a tree without branches of length $\geq \kappa$.

$$[T] - \operatorname{Sc}_S([T]) \subseteq [T - \operatorname{Sc}_S(T)].$$

③ If κ has the tree property and T is a κ -tree, then

 $\operatorname{Ker}_{S}([T]) = [\operatorname{Ker}_{S}(T)].$

Väänänen's generalized Cantor-Bendixson theorem

Theorem (Väänänen, 1991)

The following Cantor-Bendixson theorem for $\kappa \kappa$ is consistent relative to the existence of a measurable cardinal $\lambda > \kappa$:

Every closed subset of $\kappa \kappa$ is the (disjoint) union of

a κ -perfect set and a κ -scattered set, which is of size $\leq \kappa$.

Theorem (Väänänen, 1991)

The following Cantor-Bendixson theorem for $\kappa \kappa$ is consistent relative to the existence of a measurable cardinal $\lambda > \kappa$:

Every closed subset of $\kappa \kappa$ is the (disjoint) union of

a κ -perfect set and a κ -scattered set, which is of size $\leq \kappa$.

Theorem (Galgon, 2016)

Väänänen's generalized Cantor-Bendixson theorem is consistent relative to the existence of an inaccessible cardinal $\lambda > \kappa$.

Proposition (Sz)

Väänänen's generalized Cantor-Bendixson theorem is equivalent to the κ -perfect set property for closed subsets of $\kappa \kappa$ (i.e, the statement that every closed subset of $\kappa \kappa$ of size > κ has a κ -perfect subset).

Proposition (Sz)

Väänänen's generalized Cantor-Bendixson theorem is equivalent to the κ -perfect set property for closed subsets of $\kappa \kappa$ (i.e, the statement that every closed subset of $\kappa \kappa$ of size > κ has a κ -perfect subset).

Remark: The κ -PSP for closed subsets of $\kappa \kappa$ is equiconsistent with the existence of an inaccessible cardinal $\lambda > \kappa$.

Proposition (Sz)

Väänänen's generalized Cantor-Bendixson theorem is equivalent to the κ -perfect set property for closed subsets of $\kappa \kappa$ (i.e, the statement that every closed subset of $\kappa \kappa$ of size > κ has a κ -perfect subset).

Remark: The κ -PSP for closed subsets of $\kappa \kappa$ is equiconsistent with the existence of an inaccessible cardinal $\lambda > \kappa$.

Proof (idea).

Let X be a closed subset of ${}^\kappa\kappa.$ Its set of $\kappa\text{-condensation points is defined to be$

$$CP_{\kappa}(X) = \{ x \in X : |X \cap N_{x \upharpoonright \alpha}| > \kappa \text{ for all } \alpha < \kappa \}.$$

If the κ -PSP holds for closed subsets of $\kappa \kappa$, then $CP_{\kappa}(X)$ is a κ -perfect set and $X - CP_{\kappa}(X)$ is a κ -scattered set of size $\leq \kappa$.

Thank you!

Dorottya Sziráki Perfect Sets and Games on Generalized Baire Spaces