Antichains of copies of ultrahomogeneous structures

Boriša Kuzeljević

University of Novi Sad

Logic Colloquium 2019, Prague

B. Kuzeljević (UNS)

Joint work with Miloš Kurilić

B. Kuzeljević (UNS)

イロト イヨト イヨト オヨト ヨー つへで August 16, 2019. 2/12

Relational structure X:

 $\mathbb{X} = \langle X, \{\rho_i : i \in I\} \rangle$ - where ρ_i are relations $(i \in I)$.

Relational structure X:

 $\mathbb{X} = \langle X, \{\rho_i : i \in I\} \rangle$ - where ρ_i are relations $(i \in I)$.

Substructures of X:

 $\langle A, \{\rho_i \cap A^{n_i} : i \in I\} \rangle$ for $A \subset X$ and n_i the arity of the relation ρ_i $(i \in I)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Relational structure X:

 $\mathbb{X} = \langle X, \{\rho_i : i \in I\} \rangle$ - where ρ_i are relations $(i \in I)$.

Substructures of X:

 $\langle A, \{\rho_i \cap A^{n_i} : i \in I\} \rangle$ for $A \subset X$ and n_i the arity of the relation ρ_i $(i \in I)$.

Embedding from $\mathbb{X} = \langle X, \{\rho_i : i \in I\} \rangle$ **into** $\mathbb{Y} = \langle Y, \{\sigma_i : i \in I\} \rangle$:

1-1 mapping $f: X \to Y$ such that

 $\bar{x} \in \rho_i \Leftrightarrow f(\bar{x}) \in \sigma_i$

for $i \in I$ and $\bar{x} \in X^{n_i}$.

B. Kuzeljević (UNS)

August 16, 2019. 3/12

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つくつ

Relational structure X:

 $\mathbb{X} = \langle X, \{\rho_i : i \in I\} \rangle$ - where ρ_i are relations $(i \in I)$.

Substructures of X:

 $\langle A, \{\rho_i \cap A^{n_i} : i \in I\} \rangle$ for $A \subset X$ and n_i the arity of the relation ρ_i $(i \in I)$.

Embedding from $\mathbb{X} = \langle X, \{\rho_i : i \in I\} \rangle$ **into** $\mathbb{Y} = \langle Y, \{\sigma_i : i \in I\} \rangle$:

1-1 mapping $f: X \to Y$ such that

 $\bar{x} \in \rho_i \Leftrightarrow f(\bar{x}) \in \sigma_i$

for $i \in I$ and $\bar{x} \in X^{n_i}$.

 $\mathsf{Emb}(\mathbb{X},\mathbb{Y})$ denotes the set of all embeddings from \mathbb{X} into \mathbb{Y} . Aut(\mathbb{X}) denotes the set of all automorphisms of a structure \mathbb{X} .

B. Kuzeljević (UNS)

August 16, 2019. 3 / 12

・ロト・4日ト・4日ト・4日ト・4日ト

Stabilizer

Suppose that X is a relational structure, and that F is a finite subset of X. Stabilizer (pointwise) of the set F in Aut(X) is the group

 $\operatorname{Aut}_F(\mathbb{X}) = \{g \in \operatorname{Aut}(\mathbb{X}) : (\forall x \in F) \ g(x) = x\}.$

August 16, 2019. 4 / 12

Stabilizer

Suppose that X is a relational structure, and that F is a finite subset of X. Stabilizer (pointwise) of the set F in Aut(X) is the group

$$\operatorname{\mathsf{Aut}}_{\mathsf{F}}(\mathbb{X}) = \{g \in \operatorname{\mathsf{Aut}}(\mathbb{X}) : (\forall x \in \mathsf{F}) \ g(x) = x\}.$$

Orbits

Suppose that X is a relational structure, that F is a finite subset of X, and that $x \in X$. Orbit of the point x with respect to Aut_F(X) is the set:

$$\operatorname{orb}_{\operatorname{Aut}_F(\mathbb{X})}(x) = \operatorname{orb}_F(x) = \{y \in \mathbb{X} \setminus F : (\exists g \in \operatorname{Aut}_F(\mathbb{X})) \ g(x) = y\}.$$

B. Kuzeljević (UNS)

□ ト 4 ミト 4 ミト ミ つへで August 16, 2019. 4/12

Ultrahomogeneous structures

Definition:

A relational structure \mathbb{X} is *ultrahomogeneous* if for every isomorphism $\varphi : \mathbb{A} \to \mathbb{B}$ between finite substructures \mathbb{A} and \mathbb{B} of \mathbb{X} , there is an automorphism $\psi \in Aut(\mathbb{X})$ such that $\psi \upharpoonright \mathbb{A} = \varphi$.

Ultrahomogeneous structures

Definition:

A relational structure \mathbb{X} is *ultrahomogeneous* if for every isomorphism $\varphi : \mathbb{A} \to \mathbb{B}$ between finite substructures \mathbb{A} and \mathbb{B} of \mathbb{X} , there is an automorphism $\psi \in Aut(\mathbb{X})$ such that $\psi \upharpoonright \mathbb{A} = \varphi$.

Lemma

Suppose that \mathbb{X} is a countable ultrahomogeneous relational structure, and that \mathbb{A} is a substructure of \mathbb{X} . Then $\mathbb{A} \cong \mathbb{X}$ if and only if

$$(\forall F \in [\mathbb{A}]^{<\omega}) \ (\forall x \in \mathbb{X} \setminus F) \ \operatorname{orb}_F(x) \cap A \neq \emptyset.$$

JQ P

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Ultrahomogeneous structures

Definition:

A relational structure \mathbb{X} is *ultrahomogeneous* if for every isomorphism $\varphi : \mathbb{A} \to \mathbb{B}$ between finite substructures \mathbb{A} and \mathbb{B} of \mathbb{X} , there is an automorphism $\psi \in Aut(\mathbb{X})$ such that $\psi \upharpoonright \mathbb{A} = \varphi$.

Lemma

Suppose that \mathbb{X} is a countable ultrahomogeneous relational structure, and that \mathbb{A} is a substructure of \mathbb{X} . Then $\mathbb{A} \cong \mathbb{X}$ if and only if

$$(\forall F \in [\mathbb{A}]^{<\omega}) \ (\forall x \in \mathbb{X} \setminus F) \ \operatorname{orb}_F(x) \cap A \neq \emptyset.$$

Strong amalgamation property

A countable ultrahomogeneous relational structure X satisfies *the strong* amalgamation property (SAP) if $X \setminus F \cong X$ for each finite set $F \subset X$.

B. Kuzeljević (UNS)

August 16, 2019. 5 / 12

SQA

イロト イボト イヨト イヨト 三日

$$\mathbb{P}(\mathbb{X}) = \{A \subset X : \mathbb{A} \cong \mathbb{X}\} = \{f[X] : f \in \mathsf{Emb}(\mathbb{X}, \mathbb{X})\}.$$

イロト イヨト イミト イミト ミー のへで August 16, 2019. 6/12

$$\mathbb{P}(\mathbb{X}) = \{A \subset X : \mathbb{A} \cong \mathbb{X}\} = \{f[X] : f \in \mathsf{Emb}(\mathbb{X}, \mathbb{X})\}.$$

Theorem

Suppose that $\mathbb X$ is an ultrahomogeneous structure with SAP. Then there is a partition of $\mathbb X$ into countably many copies whose intersection with each orbit of $\mathbb X$ is infinite.

$$\mathbb{P}(\mathbb{X}) = \{A \subset X : \mathbb{A} \cong \mathbb{X}\} = \{f[X] : f \in \mathsf{Emb}(\mathbb{X}, \mathbb{X})\}.$$

Theorem

Suppose that X is an ultrahomogeneous structure with SAP. Then there is a partition of X into countably many copies whose intersection with each orbit of X is infinite.

Definition

Suppose that P is a poset. We say that $A \subset P$ is an antichain if for arbitrary distinct $x, y \in A$, there is no $z \in P$ such that $z \leq x$ and $z \leq y$.

$$\mathbb{P}(\mathbb{X}) = \{A \subset X : \mathbb{A} \cong \mathbb{X}\} = \{f[X] : f \in \mathsf{Emb}(\mathbb{X}, \mathbb{X})\}.$$

Theorem

Suppose that X is an ultrahomogeneous structure with SAP. Then there is a partition of X into countably many copies whose intersection with each orbit of X is infinite.

Definition

Suppose that P is a poset. We say that $A \subset P$ is an antichain if for arbitrary distinct $x, y \in A$, there is no $z \in P$ such that $z \leq x$ and $z \leq y$.

Problem:

Is there a poset P such that $\mathfrak{a}(P \times P) < \mathfrak{a}(P)$? $\mathfrak{a}(P) = \min \{ |\mathcal{A}| : \mathcal{A} \text{ is an infinite maximal antichain in } P \}.$

B. Kuzeljević (UNS)

August 16, 2019. 6 / 12

SQA

イロト イポト イヨト イヨト 三日

Maximal antichains I

Let \mathbb{K}_{ω} be a countable complete graph.

MAD families

- There is a maximal antichain of size \mathfrak{c} in the poset $\langle \mathbb{P}(\mathbb{K}_{\omega}), \subset \rangle$.
- There is no countable maximal antichain in the poset $\langle \mathbb{P}(\mathbb{K}_{\omega}), \subset \rangle$.

SQA

イロト イポト イヨト イヨト 三日

Maximal antichains I

Let \mathbb{K}_{ω} be a countable complete graph.

MAD families

- There is a maximal antichain of size \mathfrak{c} in the poset $\langle \mathbb{P}(\mathbb{K}_{\omega}), \subset \rangle$.
- There is no countable maximal antichain in the poset $\langle \mathbb{P}(\mathbb{K}_{\omega}), \subset \rangle$.

Theorem (Kurilić - Marković 2015)

There is a countable maximal antichain in $\langle \mathbb{P}(\mathbb{G}_{\mathsf{Rado}}), \subset \rangle$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Maximal antichains I

Let \mathbb{K}_{ω} be a countable complete graph.

MAD families

- There is a maximal antichain of size
 c in the poset ⟨ℙ(𝐾_ω), ⊂⟩.
- There is no countable maximal antichain in the poset $\langle \mathbb{P}(\mathbb{K}_{\omega}), \subset \rangle$.

Theorem (Kurilić - Marković 2015)

There is a countable maximal antichain in $\langle \mathbb{P}(\mathbb{G}_{\mathsf{Rado}}), \subset \rangle$.

Theorem (Kurilić 2014)

Let X be a countable indivisible relational structure. Then the poset $\mathbb{P}(X)$ contains an almost disjoint family of size \mathfrak{c} .

B. Kuzeljević (UNS)

Theorem

Suppose that \mathbb{X} is a countable ultrahomogeneous structure in a finite relational language. If \mathbb{X} satisfies SAP, then $\mathbb{P}(\mathbb{X})$ contains an almost disjoint family of size \mathfrak{c} , consisting of copies whose intersection with each orbit of \mathbb{X} is infinite.

In particular, there is a maximal antichain of size \mathfrak{c} in $\langle \mathbb{P}(\mathbb{X}), \subset \rangle$.

JQ P

イロト イポト イヨト イヨト 三日

Countable ultrahomogeneous posets

Schmerl 1979

A countable partial order is ultrahomogeneous if and only if it is isomorphic to one of the orders from the following list:

- random poset \mathbb{D} ;
- \mathbb{B}_n for $1 \leq n \leq \omega$;
- \mathbb{C}_n for $1 \leq n \leq \omega$;
- countable antichain \mathbb{A}_{ω} .

SQA

イロト イポト イヨト イヨト 三日

Countable ultrahomogeneous posets

Schmerl 1979

A countable partial order is ultrahomogeneous if and only if it is isomorphic to one of the orders from the following list:

- random poset \mathbb{D} ;
- \mathbb{B}_n for $1 \leq n \leq \omega$;
- \mathbb{C}_n for $1 \leq n \leq \omega$;
- countable antichain A_ω.

Lemma

There is a countable maximal antichain in $\langle \mathbb{Q}, \subset \rangle$.

200

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Countable ultrahomogeneous posets

Schmerl 1979

A countable partial order is ultrahomogeneous if and only if it is isomorphic to one of the orders from the following list:

- random poset D;
- \mathbb{B}_n for $1 < n < \omega$;
- \mathbb{C}_n for $1 < n < \omega$:
- countable antichain A_a.

Lemma

There is a countable maximal antichain in (\mathbb{Q}, \subset) .

Theorem

Suppose that $1 < n < \omega$. There are maximal antichains both of size \mathfrak{c} and ω in $\langle \mathbb{P}(\mathbb{C}_n), \subset \rangle$.

B. Kuzeljević (UNS)

3 August 16, 2019. 9/12

SQA

イロト イボト イヨト

Lemma

Let $n < \omega$, and let $\{P_m : m < n\}$ be a collection of posets. Suppose that P_m has a maximum $\mathbb{1}_m$ for each m < n, and that there is some k < n such that P_k contains a countable maximal antichain. Then there is a countable maximal antichain in $\prod_{m < n} P_m$.

JQ P

Lemma

Let $n < \omega$, and let $\{P_m : m < n\}$ be a collection of posets. Suppose that P_m has a maximum $\mathbb{1}_m$ for each m < n, and that there is some k < n such that P_k contains a countable maximal antichain. Then there is a countable maximal antichain in $\prod_{m < n} P_m$.

Corollary:

Let $n < \omega$. There are maximal antichain of size both ω and \mathfrak{c} in the poset $\langle \mathbb{P}(\mathbb{B}_n), \subset \rangle$.

Definition

Suppose that $\{P_i : i \in I\}$ is a collection of posets with maximum 1_i , and minimum 0_i $(i \in I)$. Countable support product of P_i 's is:

$$\prod_{i\in I}^{CS} P_i = \left\{ x \in \prod_{i\in I} P_i : |\operatorname{supp}(x)| \ge \omega \right\}.$$

August 16, 2019. 11/12

200

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Definition

Suppose that $\{P_i : i \in I\}$ is a collection of posets with maximum 1_i , and minimum 0_i $(i \in I)$. Countable support product of P_i 's is:

$$\prod_{i\in I}^{CS} P_i = \left\{ x \in \prod_{i\in I} P_i : |\operatorname{supp}(x)| \ge \omega \right\}.$$

Lemma

Suppose that P_m is a poset with maximum 1_m and minimum 0_m for each $m < \omega$. Then there is no countable maximal antichain in $\prod_{m < \omega}^{CS} P_m$.

SQA

Definition

Suppose that $\{P_i : i \in I\}$ is a collection of posets with maximum 1_i , and minimum 0_i $(i \in I)$. Countable support product of P_i 's is:

$$\prod_{i\in I}^{CS} P_i = \left\{ x \in \prod_{i\in I} P_i : |\operatorname{supp}(x)| \ge \omega \right\}.$$

Lemma

Suppose that P_m is a poset with maximum 1_m and minimum 0_m for each $m < \omega$. Then there is no countable maximal antichain in $\prod_{m < \omega}^{CS} P_m$.

Corollary:

There is no countable maximal antichain in $\langle \mathbb{P}(\mathbb{B}_{\omega}), \subset \rangle$.

B. Kuzeljević (UNS)

Random poset

Theorem

There are maximal antichains of size both ω and \mathfrak{c} in $\langle \mathbb{P}(\mathbb{D}), \subset \rangle$.

B. Kuzeljević (UNS)

August 16, 2019. 12 / 12