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Why intuitionistic temporal logic?

Intuitionistic temporal logics have been suggested for

1. Davies 1996: Typing partially evaluated programs

2. Maier 2004: Possibly terminating reactive systems

3. Kremer 2004: Reasoning about topological dynamics

4. Cabalar and Pérez 2007: Temporal answer-set programming
(based on Here-and-There logic)

Today we will focus on 3.



Modal logic for topological dynamics

Dynamical (topological) system: Pair (X ,S) where X is a
topological space and S : X → X is continuous

Artemov, Davoren, Nerode 1997: Proposed bi-modal classical logic
for reasoning about topological dynamics, with � as
‘interior’ and ◦ as ‘next’

Kremer, Mints 2005: Observed that adding � to the language
allowed us to reason about asymptotic behavior
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Case study: The Poincaré recurrence theorem

Theorem (Poincaré)
Let X ⊆ Rn be open and bounded and let S : X → X be
volume-preserving; that is,

vol ◦ S−1 ≡ vol

Then, if E ⊆ X is open and non-empty, it follows that E has a
recurrent point; that is, there is x ∈ E and n > 0 such that
Sn(x) ∈ E

Theorem (Kremer, Mints)
Poincaré recurrence is equivalent to the validity of

�p → �◦ � p
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Good news and bad news

Artemov, Davoren, Nerode 1997: Validity over L�◦ decidable, has
the finite model property, finitely axiomatizable

Konev, Kontchakov, Wolter, Zakharyaschev 2006: Validity over
L�◦� is undecidable

DFD 2012: The logic over L�◦� admits a natural axiomatization
when enriched with the tangled closure modality



Good news and bad news

Artemov, Davoren, Nerode 1997: Validity over L�◦ decidable, has
the finite model property, finitely axiomatizable

Konev, Kontchakov, Wolter, Zakharyaschev 2006: Validity over
L�◦� is undecidable

DFD 2012: The logic over L�◦� admits a natural axiomatization
when enriched with the tangled closure modality



Good news and bad news

Artemov, Davoren, Nerode 1997: Validity over L�◦ decidable, has
the finite model property, finitely axiomatizable

Konev, Kontchakov, Wolter, Zakharyaschev 2006: Validity over
L�◦� is undecidable

DFD 2012: The logic over L�◦� admits a natural axiomatization
when enriched with the tangled closure modality



Kremer’s intuitionistic temporal logic

Kremer 2004: Work over L◦� and use the topological semantics of
intuitionistic logic to interpret →

However, the following standard validities fail

I �p → ◦�p

I �◦p → ◦�p

I �p → ��p
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Topological semantics for intuitionistic logic
Models
M = (X , T ,V ), where:

I (X , T ) is a topological space
I V : PV→ T

Truth sets

I J⊥K = ∅

I JpK = V (p)

I Jϕ ∧ ψK = JϕK ∩ JψK

I Jϕ ∨ ψK = JϕK ∪ JψK

I Jϕ→ ψK

=
(
JϕKc ∪ JψK

)◦
Interior of A ⊆ X :

A◦ =
⋃
{U ∈ T : U ⊆ A}
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Intuitionistic regions

JP∨¬PKI



Intuitionistic regions

JP∨¬PKI Fails!



Special case: Poset models

Definition
A partial order 4 on a set W generates the topology T4 on W
where U ⊆W is open if w ∈ U and v < w implies v ∈ U

Lemma
If (X , T ,V ) is a model such that T is generated by a partial order
4, then

(M,w) |= ϕ→ ψ iff ∀v < w (M, v) 6|= ϕ or (M, v) |= ψ



Intuitionistic temporal logic

Language L��∀: ϕ,ψ :=

p | ⊥ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ→ ψ | ◦ϕ | �ϕ | �ϕ | ∀ϕ

Models: (X , T ,S,V ), where S : X → X is continuous

Truth of temporal operators

J◦ϕK = S−1JϕK

J�ϕK =
⋃

n<ω S−nJϕK

J�ϕK = (
⋂

n<ω S−nJϕK)◦

J∀ϕK =
{

X if JϕK = X
∅ otherwise

Dynamical posets: If T is generated by 4, S is continuous iff
w 4 v implies S(w) 4 S(v)
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Kremer’s counterexample: �p → ◦�p fails!

I X = R
I V (p) = (−∞, 1)

I S(x) =
{

2x if x > 0
0 otherwise

0 1-1JpK

⋂
n<ω S−nJpK

J�pK
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Some good news

Theorem (DFD)
Poincaré-recurrence is characterized by p → ¬¬ ◦ �p

Theorem (DFD)
The validity problem for L�∀ is decidable over the class of all
dynamical systems

Theorem (Boudou, Diéguez, DFD)
The validity problem for L�� is decidable over the class of
dynamical posets
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The calculus ITL0
�

ITaut Standard intuitionistic propositional axioms
Temporal axioms:

Next⊥ ¬ ◦ ⊥
Next∧ (◦ϕ ∧ ◦ψ)→ ◦(ϕ ∧ ψ)
Next∨ ◦(ϕ ∨ ψ)→ (◦ϕ ∨ ◦ψ)
Next→ ◦(ϕ→ ψ)→ (◦ϕ→ ◦ψ)
Fix� (ϕ ∨ ◦ � ϕ)→ �ϕ

Rules:

MP ϕ ϕ→ ψ

ψ
Nec◦

ϕ

◦ϕ

Mon�
ϕ→ ψ

�ϕ→ �ψ
Ind ◦ϕ→ ϕ

�ϕ→ ϕ



The calculus ITL0
�∀

Add the following to ITL0
�:

K∀ ∀(ϕ→ ψ)→ (∀ϕ→ ∀ψ) EM∀ ∀ϕ ∨ ¬∀ϕ
Dist∀ ∀(ϕ ∨ ∀ψ)→ ∀ϕ ∨ ∀ψ T∀ ∀ϕ→ ϕ

Next∀ ∀ϕ↔ ◦∀ϕ 4∀ ∀ϕ→ ∀∀ϕ

Nec∀
ϕ

∀ϕ

Theorem
ITL0
�∀ (and hence ITL0

�) is sound for the class of dynamical
systems.

Question: Are ITL0
�/ITL0

�∀ complete

I for the class of dynamical systems?

I for the class of dynamical posets?
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Kripke-validity of ∀(¬p ∨ �p)→ (�p ∨ ¬ � p)

∀(¬p ∨ �p) ¬ � p

�p p

¬p�p p
�p
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Falsifying ∀(¬p ∨ �p)→ (�p ∨ ¬ � p) topologically

I X = R
I V (p) = (1,∞)

I S(x) = 2x

0 1-1 JpK

J¬pK

J�pK

J¬ � pK
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Conservativity for ‘eventually’

Theorem (Boudou et al.)
A formula ϕ ∈ L� is valid over the class of dynamical systems iff it
is valid over the class of dynamical posets

Proof idea:
Formulas not containing ∀ are made true in a finite amount of
time and hence we may ‘discretize’ models.
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Completeness

Theorem (Boudou, Diéguez, DFD)
If ϕ ∈ L�∀ is valid on the class of dynamical systems then
ITL0
�∀ ` ϕ.
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� ` ϕ.
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Gödel-Tarski translation
The translation ϕ 7→ ϕ� embeds L�� into the classical L�� by
setting

I p� = �p I ⊥� = ⊥
I (ϕ ∧ ψ)� = ϕ� ∧ ψ� I (ϕ ∨ ψ)� = ϕ� ∨ ψ�

I (ϕ→ ψ)� = �(ϕ� → ψ�) I (◦ϕ)� = ◦ϕ�

I (�ϕ)� = �ϕ� I (�ϕ)� = ��ϕ�

I (∀ϕ)� = ∀ϕ�

Theorem
Given ϕ ∈ L��∀, ϕ is valid iff ϕ� is.

Corollary
The set of L��-formulas valid over the class of dynamical systems
is computably enumerable.
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Dynamic topological logic on metric spaces

Theorem (DFD)
Given n ≥ 2, every formula of L�� that is (classically) satisfiable
on a dynamical poset is satisfiable on Rn.

Theorem (DFD)
Every formula of L�� that is satisfiable on a metric space is
satisfiable on the Cantor space.

Theorem (DFD)
Every formula of L��∀ that is satisfiable on a dynamical system is
satisfiable on Q.
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Intuitionistic temporal logic on metric spaces

Theorem (Boudou, Diéguez, DFD)
If ϕ ∈ L� is valid on
I Rn for any fixed n ≥ 2, or
I the Cantor space,

then ITL0
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Future work

I Is there a natural axiomatization for the set of L��/L�∀
formulas valid over the class of dynamical posets?

I Is there a natural axiomatization for the set of L�∀ formulas
valid over the Cantor space/Rn?

I Is there a natural axiomatization for the set of L� formulas
valid over R?

I Does Kremer’s logic over L� have a natural axiomatization?

I Is there a different topological interpretation for � validating
the standard LTL axioms?

Yes! [Boudou et al., JELIA’19]

Děkuji!
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Děkuji!



Future work

I Is there a natural axiomatization for the set of L��/L�∀
formulas valid over the class of dynamical posets?

I Is there a natural axiomatization for the set of L�∀ formulas
valid over the Cantor space/Rn?

I Is there a natural axiomatization for the set of L� formulas
valid over R?

I Does Kremer’s logic over L� have a natural axiomatization?

I Is there a different topological interpretation for � validating
the standard LTL axioms?

Yes! [Boudou et al., JELIA’19]
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