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Why intuitionistic temporal logic?
Intuitionistic temporal logics have been suggested for
1. Davies 1996: Typing partially evaluated programs
2. Maier 2004: Possibly terminating reactive systems
3. Kremer 2004: Reasoning about topological dynamics

4. Cabalar and Pérez 2007: Temporal answer-set programming
(based on Here-and-There logic)

Today we will focus on 3.
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Modal logic for topological dynamics

Dynamical (topological) system: Pair (X, S) where X is a
topological space and S: X — X is continuous

Artemov, Davoren, Nerode 1997: Proposed bi-modal classical logic
for reasoning about topological dynamics, with B as
‘interior’ and o as ‘next’

Kremer, Mints 2005: Observed that adding [ to the language
allowed us to reason about asymptotic behavior
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Theorem (Poincaré)

Let X C RR" be open and bounded and let S: X — X be
volume-preserving; that is,

vol o S1 = vol

Then, if E C X is open and non-empty, it follows that E has a
recurrent point; that is, there is x € E and n > 0 such that

S"(x) e E



Case study: The Poincaré recurrence theorem

Theorem (Poincaré)

Let X C RR" be open and bounded and let S: X — X be
volume-preserving; that is,

vol o S1 = vol

Then, if E C X is open and non-empty, it follows that E has a
recurrent point; that is, there is x € E and n > 0 such that

S"(x) e E

Theorem (Kremer, Mints)

Poincaré recurrence is equivalent to the validity of

Hp — ¢oop
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Good news and bad news

Artemov, Davoren, Nerode 1997: Validity over Lm, decidable, has
the finite model property, finitely axiomatizable

Konev, Kontchakov, Wolter, Zakharyaschev 2006: Validity over
Lmor is undecidable

DFD 2012: The logic over Lmory admits a natural axiomatization
when enriched with the tangled closure modality
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Kremer's intuitionistic temporal logic

Kremer 2004: Work over L, and use the topological semantics of
intuitionistic logic to interpret —

However, the following standard validities fail

» Op — oldp
» Llop — oldp

» [p — O0p
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Topological semantics for intuitionistic logic

Models
M = (X,T,V), where:

» (X, T) is a topological space

» VPV T
Truth sets
> [l =2 > e vyl =lel Vvl
> [pl = V(p) > Lo =]
> [p Ayl =[] n[¥] = (el v [¥D)°

Interior of A C X:

A= J{ueT UCA}
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Intuitionistic regions

[[PV—\P]]' Fails!



Special case: Poset models

Definition
A partial order < on a set W generates the topology 75 on W
where U C W is open if w € U and v = w implies v € U

Lemma
If (X, T,V) is a model such that T is generated by a partial order
<, then

(M,w) =@ = ¢ iff Vv iz w (M, v) = or (M,v) =1
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Intuitionistic temporal logic
Language Loy @, =
pl Ll oAy evi| o= op| op| Op| Ve

Models: (X,7T,S, V), where S: X — X is continuous

Truth of temporal operators

[ow] = Sl [O¢] = (Nnew S "l¢])°
Vo] = {X if [o] = X

& otherwise

[[090]] = Un<w S_H[[SD]]

Dynamical posets: If T is generated by <, S is continuous iff
w < v implies S(w) < S(v)
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AN

AN
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Theorem (DFD)

Poincaré-recurrence is characterized by p — —-—oop

Theorem (DFD)

The validity problem for Loy is decidable over the class of all
dynamical systems

Theorem (Boudou, Diéguez, DFD)

The validity problem for L. is decidable over the class of
dynamical posets



The calculus ITL?

ITaut

Standard intuitionistic propositional axioms

Temporal axioms:

Next |

Next A

Next,,

Next_,
Fix,

Rules:

MP

Mon,

—o |

(op A otp) = o(p A1)
o(p V) = (op Vor)
o(p = ¥) = (o — ot))
(pVoop)—op

%
L Nec, R
(0 op
© =P ind o — @

P —> oY o — P
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The calculus ITLY,

Add the following to ITLY:
Ky V(e =) = (Vo = V) EMy VoV -V
Disty V(¢ V Y9) — Yo V Vi Ty VYep—oo

Nexty V¢ < oV 4y Yo — YW
Necy %
Theorem

ITLY, (and hence ITLY) is sound for the class of dynamical

systems.
Question: Are ITL2/ITLY, complete
» for the class of dynamical systems?

» for the class of dynamical posets?
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Conservativity for ‘eventually’

Theorem (Boudou et al.)

A formula p € L, is valid over the class of dynamical systems iff it
is valid over the class of dynamical posets

Proof idea:
Formulas not containing V are made true in a finite amount of
time and hence we may ‘discretize’ models.
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Completeness

Theorem (Boudou, Diéguez, DFD)

If p € Loy is valid on the class of dynamical systems then
ITLY, F .

Theorem (Boudou, Diéguez, DFD)
If o € L, is valid on the class of dynamical posets then ITL I .
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Godel-Tarski translation

The translation ¢ +— gp' embeds L into the classical La by

setting
» p"=Np » 1"=7
> (pAY) =M Aym > (pv)i=pMvym
> (o= )" =E(M - ") > (op)® = o
> (op)® = oM > (Op)" =mo"
> (V)" =V

Theorem
Given ¢ € Lory, @ is valid iff o™ is.

Corollary

The set of L.o-formulas valid over the class of dynamical systems
is computably enumerable.
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Theorem (DFD)

Given n > 2, every formula of Lan that is (classically) satisfiable
on a dynamical poset is satisfiable on R".

Theorem (DFD)

Every formula of Lan that is satisfiable on a metric space is
satisfiable on the Cantor space.

Theorem (DFD)

Every formula of Ly that is satisfiable on a dynamical system is
satisfiable on Q.
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Intuitionistic temporal logic on metric spaces

Theorem (Boudou, Diéguez, DFD)
If p € Lo is valid on

» R" for any fixed n > 2, or

» the Cantor space,
then ITLO - ¢.

Theorem (Boudou, Diéguez, DFD)
If ¢ € Loy is valid on Q then ITLSV F .
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Future work

» |s there a natural axiomatization for the set of Lon/ Loy
formulas valid over the class of dynamical posets?

> Is there a natural axiomatization for the set of L.,y formulas
valid over the Cantor space/R"?

» |s there a natural axiomatization for the set of L, formulas
valid over R?

» Does Kremer's logic over £ have a natural axiomatization?

> Is there a different topological interpretation for [J validating
the standard LTL axioms?

Yes! [Boudou et al., JELIA’19]

Dékuji!



