A Complete Intuitionistic Temporal Logic for Topological Dynamics

David Fernández-Duque

Department of Mathematics, Ghent University, Belgium

Joint work with J. Boudou and M. Diéguez

Why intuitionistic temporal logic?

Intuitionistic temporal logics have been suggested for

- 1. Davies 1996: Typing partially evaluated programs
- 2. Maier 2004: Possibly terminating reactive systems
- 3. Kremer 2004: Reasoning about topological dynamics
- 4. Cabalar and Pérez 2007: Temporal answer-set programming (based on Here-and-There logic)

Today we will focus on 3.

Modal logic for topological dynamics

Dynamical (topological) system: Pair (X, S) where X is a topological space and $S: X \to X$ is continuous

Modal logic for topological dynamics

Dynamical (topological) system: Pair (X, S) where X is a topological space and $S: X \to X$ is continuous

Artemov, Davoren, Nerode 1997: Proposed bi-modal classical logic for reasoning about topological dynamics, with ■ as 'interior' and \circ as 'next' Modal logic for topological dynamics

Dynamical (topological) system: Pair (X, S) where X is a topological space and $S: X \to X$ is continuous

Artemov, Davoren, Nerode 1997: Proposed bi-modal classical logic for reasoning about topological dynamics, with ■ as 'interior' and \circ as 'next'

Kremer, Mints 2005: Observed that adding \Box to the language allowed us to reason about asymptotic behavior

Case study: The Poincaré recurrence theorem

Theorem (Poincaré)

Let $X \subseteq \mathbb{R}^n$ be open and bounded and let $S \colon X \to X$ be volume-preserving; that is,

$$\mathsf{vol} \circ S^{-1} \equiv \mathsf{vol}$$

Then, if $E \subseteq X$ is open and non-empty, it follows that E has a recurrent point; that is, there is $x \in E$ and n > 0 such that $S^n(x) \in E$

Case study: The Poincaré recurrence theorem

Theorem (Poincaré)

Let $X \subseteq \mathbb{R}^n$ be open and bounded and let $S \colon X \to X$ be volume-preserving; that is,

$$\operatorname{vol} \circ S^{-1} \equiv \operatorname{vol}$$

Then, if $E \subseteq X$ is open and non-empty, it follows that E has a recurrent point; that is, there is $x \in E$ and n > 0 such that $S^n(x) \in E$

Theorem (Kremer, Mints)

Poincaré recurrence is equivalent to the validity of

$$\blacksquare p \to \blacklozenge \circ \diamond p$$

Good news and bad news

Artemov, Davoren, Nerode 1997: Validity over $\mathcal{L}_{\blacksquare\circ}$ decidable, has the finite model property, finitely axiomatizable

Good news and bad news

Artemov, Davoren, Nerode 1997: Validity over $\mathcal{L}_{\blacksquare\circ}$ decidable, has the finite model property, finitely axiomatizable

Konev, Kontchakov, Wolter, Zakharyaschev 2006: Validity over $\mathcal{L}_{\blacksquare \circ \square} \text{ is undecidable}$

Good news and bad news

Artemov, Davoren, Nerode 1997: Validity over $\mathcal{L}_{\blacksquare\circ}$ decidable, has the finite model property, finitely axiomatizable

Konev, Kontchakov, Wolter, Zakharyaschev 2006: Validity over $\mathcal{L}_{\blacksquare \circ \Box}$ is undecidable

DFD 2012: The logic over $\mathcal{L}_{\blacksquare \circ \Box}$ admits a natural axiomatization when enriched with the tangled closure modality

Kremer's intuitionistic temporal logic

Kremer 2004: Work over $\mathcal{L}_{\circ\square}$ and use the topological semantics of intuitionistic logic to interpret \rightarrow

Kremer's intuitionistic temporal logic

Kremer 2004: Work over $\mathcal{L}_{\circ\square}$ and use the topological semantics of intuitionistic logic to interpret \rightarrow

However, the following standard validities fail

Topological semantics for intuitionistic logic

Models

- $\mathcal{M} = (X, \mathcal{T}, V)$, where:
 - (X, \mathcal{T}) is a topological space
 - $V : \mathbb{PV} \to \mathcal{T}$

Topological semantics for intuitionistic logic

Models

- $\mathcal{M} = (X, \mathcal{T}, V)$, where:
 - (X, \mathcal{T}) is a topological space
 - $V : \mathbb{PV} \to \mathcal{T}$

Truth sets

 $\blacktriangleright \ \llbracket \bot \rrbracket = \varnothing$

$$\blacktriangleright \llbracket p \rrbracket = V(p)$$

 $\blacktriangleright \ \llbracket \varphi \land \psi \rrbracket = \llbracket \varphi \rrbracket \cap \llbracket \psi \rrbracket$

 $\blacktriangleright \ \llbracket \varphi \lor \psi \rrbracket = \llbracket \varphi \rrbracket \cup \llbracket \psi \rrbracket$

$$\bullet \ \llbracket \varphi \to \psi \rrbracket$$

 $= \left(\llbracket \varphi \rrbracket^{c} \cup \llbracket \psi \rrbracket \right)^{\circ}$

Interior of $A \subseteq X$:

$$A^\circ = \bigcup \{ U \in \mathcal{T} : U \subseteq A \}$$

Classical regions

Classical regions

 $[\![\neg P]\!]$

Classical regions

$$\llbracket P \lor \neg P \rrbracket$$

 $\llbracket P \rrbracket$

 $\llbracket \neg P \rrbracket'$

$$\llbracket P \lor \neg P \rrbracket^I$$

 $\llbracket P \lor \neg P \rrbracket^I$ Fails!

Special case: Poset models

Definition

A partial order \preccurlyeq on a set W generates the topology $\mathcal{T}_{\preccurlyeq}$ on W where $U \subseteq W$ is open if $w \in U$ and $v \succcurlyeq w$ implies $v \in U$

Lemma

If (X, \mathcal{T}, V) is a model such that T is generated by a partial order \preccurlyeq , then

$$(\mathcal{M}, \mathsf{w}) \models \varphi \rightarrow \psi \text{ iff } \forall \mathsf{v} \succcurlyeq \mathsf{w} (\mathcal{M}, \mathsf{v}) \not\models \varphi \text{ or } (\mathcal{M}, \mathsf{v}) \models \psi$$

Intuitionistic temporal logic

 $\begin{array}{l} \text{Language } \mathcal{L}_{\diamond \Box \forall} \colon \varphi, \psi := \\ p \mid \perp \mid \varphi \land \psi \mid \varphi \lor \psi \mid \varphi \rightarrow \psi \mid \circ \varphi \mid \diamond \varphi \mid \Box \varphi \mid \forall \varphi \end{array}$

Models: (X, \mathcal{T}, S, V) , where $S \colon X \to X$ is continuous

Intuitionistic temporal logic

Language
$$\mathcal{L}_{\diamond \Box \forall}$$
: $\varphi, \psi :=$
 $p \mid \perp \mid \varphi \land \psi \mid \varphi \lor \psi \mid \varphi \rightarrow \psi \mid \circ \varphi \mid \diamond \varphi \mid \Box \varphi \mid \forall \varphi$
Models: (X, \mathcal{T}, S, V) , where $S: X \rightarrow X$ is continuous

Truth of temporal operators

$$\begin{split} \llbracket \circ \varphi \rrbracket &= S^{-1}\llbracket \varphi \rrbracket & \llbracket \Box \varphi \rrbracket &= \left(\bigcap_{n < \omega} S^{-n}\llbracket \varphi \rrbracket\right)^{\circ} \\ \llbracket \diamond \varphi \rrbracket &= \bigcup_{n < \omega} S^{-n}\llbracket \varphi \rrbracket & \llbracket \forall \varphi \rrbracket &= \begin{cases} X & \text{if } \llbracket \varphi \rrbracket = X \\ \varnothing & \text{otherwise} \end{cases} \end{split}$$

Intuitionistic temporal logic

Language
$$\mathcal{L}_{\diamond \Box \forall}$$
: $\varphi, \psi :=$
 $p \mid \perp \mid \varphi \land \psi \mid \varphi \lor \psi \mid \varphi \rightarrow \psi \mid \circ \varphi \mid \diamond \varphi \mid \Box \varphi \mid \forall \varphi$
Models: (X, \mathcal{T}, S, V) , where $S: X \rightarrow X$ is continuous

Truth of temporal operators

$$\llbracket \circ \varphi \rrbracket = S^{-1} \llbracket \varphi \rrbracket \qquad \qquad \llbracket \Box \varphi \rrbracket = \left(\bigcap_{n < \omega} S^{-n} \llbracket \varphi \rrbracket \right)^{\circ}$$
$$\llbracket \diamond \varphi \rrbracket = \bigcup_{n < \omega} S^{-n} \llbracket \varphi \rrbracket \qquad \qquad \qquad \llbracket \forall \varphi \rrbracket = \begin{cases} X & \text{if } \llbracket \varphi \rrbracket = X \\ \varnothing & \text{otherwise} \end{cases}$$

Dynamical posets: If \mathcal{T} is generated by \preccurlyeq , S is continuous iff $w \preccurlyeq v$ implies $S(w) \preccurlyeq S(v)$

Kremer's counterexample: $\Box p \rightarrow \circ \Box p$ fails!

Kremer's counterexample: $\Box p \rightarrow \circ \Box p$ fails!

Kremer's counterexample: $\Box p \rightarrow \circ \Box p$ fails!

Some good news

Theorem (DFD)

Poincaré-recurrence is characterized by $p \rightarrow \neg \neg \circ \diamond p$

Some good news

Theorem (DFD)

Poincaré-recurrence is characterized by $p \rightarrow \neg \neg \circ \diamond p$

Theorem (DFD)

The validity problem for $\mathcal{L}_{\diamond\forall}$ is decidable over the class of all dynamical systems

Some good news

Theorem (DFD)

Poincaré-recurrence is characterized by $p \rightarrow \neg \neg \circ \diamond p$

Theorem (DFD)

The validity problem for $\mathcal{L}_{\diamond\forall}$ is decidable over the class of all dynamical systems

Theorem (Boudou, Diéguez, DFD)

The validity problem for $\mathcal{L}_{\diamond\square}$ is decidable over the class of dynamical posets
The calculus ITL^0_{\diamond}

ITaut Standard intuitionistic propositional axioms Temporal axioms:

 $\begin{array}{ll} \mathsf{Next}_{\perp} & \neg \circ \bot \\ \mathsf{Next}_{\wedge} & (\circ \varphi \land \circ \psi) \to \circ (\varphi \land \psi) \\ \mathsf{Next}_{\vee} & \circ (\varphi \lor \psi) \to (\circ \varphi \lor \circ \psi) \\ \mathsf{Next}_{\rightarrow} & \circ (\varphi \to \psi) \to (\circ \varphi \to \circ \psi) \\ \mathsf{Fix}_{\diamond} & (\varphi \lor \circ \diamond \varphi) \to \diamond \varphi \end{array}$

Rules:

 $\begin{array}{lll} \mathsf{MP} & \frac{\varphi & \varphi \to \psi}{\psi} & & \mathsf{Nec}_{\circ} & \frac{\varphi}{\circ \varphi} \\ \\ \mathsf{Mon}_{\diamond} & \frac{\varphi \to \psi}{\diamond \varphi \to \diamond \psi} & & \mathsf{Ind} & \frac{\circ \varphi \to \varphi}{\diamond \varphi \to \varphi} \end{array}$

The calculus $\mathsf{ITL}^0_{\diamond\forall}$

Add the following to ITL_{\diamond}^{0} :

$$\begin{array}{lll} \mathsf{K}_\forall & \forall (\varphi \to \psi) \to (\forall \varphi \to \forall \psi) & \mathsf{EM}_\forall & \forall \varphi \lor \neg \forall \varphi \\ \mathsf{Dist}_\forall & \forall (\varphi \lor \forall \psi) \to \forall \varphi \lor \forall \psi & \mathsf{T}_\forall & \forall \varphi \to \varphi \\ \mathsf{Next}_\forall & \forall \varphi \leftrightarrow \circ \forall \varphi & \mathsf{4}_\forall & \forall \varphi \to \forall \forall \varphi \\ \mathsf{Nec}_\forall & \frac{\varphi}{\forall \varphi} \end{array}$$

Add the following to ITL^{0}_{\diamond} :

K∀	$\forall (\varphi \to \psi) \to (\forall \varphi \to \forall \psi)$	EM_\forall	$\forall \varphi \vee \neg \forall \varphi$
$Dist_\forall$	$\forall (\varphi \lor \forall \psi) \to \forall \varphi \lor \forall \psi$	T_\forall	$\forall \varphi \to \varphi$
$Next_\forall$	$\forall \varphi \leftrightarrow \circ \forall \varphi$	4∀	$\forall \varphi \rightarrow \forall \forall \varphi$
Nec_\forall	$\frac{\varphi}{\forall \varphi}$		

Theorem

 $\mathsf{ITL}^0_{\diamond\forall}$ (and hence ITL^0_\diamond) is sound for the class of dynamical systems.

Add the following to ITL^{0}_{\diamond} :

K_\forall	$\forall (\varphi \to \psi) \to (\forall \varphi \to \forall \psi)$	EM_\forall	$\forall \varphi \vee \neg \forall \varphi$
$Dist_\forall$	$\forall (\varphi \lor \forall \psi) \to \forall \varphi \lor \forall \psi$	T_\forall	$\forall \varphi \to \varphi$
$Next_\forall$	$\forall \varphi \leftrightarrow \circ \forall \varphi$	4∀	$\forall \varphi \rightarrow \forall \forall \varphi$
Nec_\forall	$\frac{\varphi}{\forall \varphi}$		

Theorem

 $\mathsf{ITL}^0_{\diamond\forall}$ (and hence ITL^0_\diamond) is sound for the class of dynamical systems.

Question: Are $\mathsf{ITL}^0_\diamond/\mathsf{ITL}^0_{\diamond\forall}$ complete

Add the following to ITL^{0}_{\diamond} :

K_\forall	$\forall (\varphi \to \psi) \to (\forall \varphi \to \forall \psi)$	EM_\forall	$\forall \varphi \vee \neg \forall \varphi$
$Dist_\forall$	$\forall (\varphi \lor \forall \psi) \to \forall \varphi \lor \forall \psi$	T_\forall	$\forall \varphi \to \varphi$
$Next_\forall$	$\forall \varphi \leftrightarrow \circ \forall \varphi$	4∀	$\forall \varphi \rightarrow \forall \forall \varphi$
Nec_\forall	$\frac{\varphi}{\forall \varphi}$		

Theorem

 $\mathsf{ITL}^0_{\diamond\forall}$ (and hence ITL^0_\diamond) is sound for the class of dynamical systems.

Question: Are $\mathsf{ITL}^0_\diamond/\mathsf{ITL}^0_{\diamond\forall}$ complete

for the class of dynamical systems?

Add the following to ITL^{0}_{\diamond} :

K_\forall	$\forall (\varphi \to \psi) \to (\forall \varphi \to \forall \psi)$	EM_\forall	$\forall \varphi \vee \neg \forall \varphi$
$Dist_\forall$	$\forall (\varphi \lor \forall \psi) \to \forall \varphi \lor \forall \psi$	T_\forall	$\forall \varphi \to \varphi$
$Next_\forall$	$\forall \varphi \leftrightarrow \circ \forall \varphi$	4∀	$\forall \varphi \rightarrow \forall \forall \varphi$
Nec_\forall	$\frac{\varphi}{\forall \varphi}$		

Theorem

 $\mathsf{ITL}^0_{\diamond\forall}$ (and hence ITL^0_\diamond) is sound for the class of dynamical systems.

Question: Are $\mathsf{ITL}^0_\diamond/\mathsf{ITL}^0_{\diamond\forall}$ complete

- for the class of dynamical systems?
- for the class of dynamical posets?

 $\forall (\neg p \lor \diamond p)$

$$\forall (\neg p \lor \diamond p) \neg \diamond p$$

$$V(p) = (1, \infty)$$

$$V(p) = (1, \infty)$$

$$V(p) = (1, \infty)$$

$$V(p) = (1, \infty)$$

Conservativity for 'eventually'

Theorem (Boudou et al.)

A formula $\varphi \in \mathcal{L}_{\diamond}$ is valid over the class of dynamical systems iff it is valid over the class of dynamical posets

Conservativity for 'eventually'

Theorem (Boudou et al.)

A formula $\varphi \in \mathcal{L}_{\diamond}$ is valid over the class of dynamical systems iff it is valid over the class of dynamical posets

Proof idea:

Formulas not containing \forall are made true in a finite amount of time and hence we may 'discretize' models.

Completeness

Theorem (Boudou, Diéguez, DFD) If $\varphi \in \mathcal{L}_{\diamond\forall}$ is valid on the class of dynamical systems then $ITL_{\diamond\forall}^{0} \vdash \varphi$.

Completeness

Theorem (Boudou, Diéguez, DFD) If $\varphi \in \mathcal{L}_{\diamond\forall}$ is valid on the class of dynamical systems then $ITL_{\diamond\forall}^{0} \vdash \varphi$.

Theorem (Boudou, Diéguez, DFD) If $\varphi \in \mathcal{L}_{\diamond}$ is valid on the class of dynamical **posets** then $ITL_{\diamond}^{0} \vdash \varphi$.

Gödel-Tarski translation

The translation $\varphi \mapsto \varphi^{\blacksquare}$ embeds $\mathcal{L}_{\diamond \Box}$ into the classical $\mathcal{L}_{\blacksquare \Box}$ by setting

Theorem Given $\varphi \in \mathcal{L}_{\diamond \Box \forall}$, φ is valid iff φ^{\blacksquare} is.

Gödel-Tarski translation

The translation $\varphi \mapsto \varphi^{\blacksquare}$ embeds $\mathcal{L}_{\diamond \Box}$ into the classical $\mathcal{L}_{\blacksquare \Box}$ by setting

Theorem Given $\varphi \in \mathcal{L}_{\diamond \Box \forall}$, φ is valid iff φ^{\blacksquare} is.

Corollary

The set of $\mathcal{L}_{\diamond\square}$ -formulas valid over the class of dynamical systems is computably enumerable.

Dynamic topological logic on metric spaces

Theorem (DFD)

Given $n \ge 2$, every formula of $\mathcal{L}_{\blacksquare\square}$ that is (classically) satisfiable on a dynamical poset is satisfiable on \mathbb{R}^n .

Dynamic topological logic on metric spaces

Theorem (DFD)

Given $n \ge 2$, every formula of $\mathcal{L}_{\blacksquare\square}$ that is (classically) satisfiable on a dynamical poset is satisfiable on \mathbb{R}^n .

Theorem (DFD)

Every formula of $\mathcal{L}_{\blacksquare\Box}$ that is satisfiable on a metric space is satisfiable on the Cantor space.

Dynamic topological logic on metric spaces

Theorem (DFD)

Given $n \ge 2$, every formula of $\mathcal{L}_{\blacksquare\square}$ that is (classically) satisfiable on a dynamical poset is satisfiable on \mathbb{R}^n .

Theorem (DFD)

Every formula of $\mathcal{L}_{\blacksquare\Box}$ that is satisfiable on a metric space is satisfiable on the Cantor space.

Theorem (DFD)

Every formula of $\mathcal{L}_{\blacksquare \Box \forall}$ that is satisfiable on a dynamical system is satisfiable on \mathbb{Q} .

Intuitionistic temporal logic on metric spaces

Theorem (Boudou, Diéguez, DFD) If $\varphi \in \mathcal{L}_{\diamond}$ is valid on $\blacktriangleright \mathbb{R}^n$ for any fixed $n \ge 2$, or

the Cantor space,

then $\mathsf{ITL}^0_\diamond \vdash \varphi$.

Intuitionistic temporal logic on metric spaces

Theorem (Boudou, Diéguez, DFD) If $\varphi \in \mathcal{L}_{\diamond}$ is valid on $\blacktriangleright \mathbb{R}^n$ for any fixed $n \ge 2$, or \blacktriangleright the Cantor space, then $ITL^0_{\diamond} \vdash \varphi$.

Theorem (Boudou, Diéguez, DFD) If $\varphi \in \mathcal{L}_{\diamond \forall}$ is valid on \mathbb{Q} then $\mathsf{ITL}_{\diamond \forall}^0 \vdash \varphi$.

Is there a natural axiomatization for the set of L_{o□}/L_{o∀} formulas valid over the class of dynamical posets?

- Is there a natural axiomatization for the set of L_{o□}/L_{o∀} formulas valid over the class of dynamical posets?
- Is there a natural axiomatization for the set of L_{◊∀} formulas valid over the Cantor space/ℝⁿ?

- Is there a natural axiomatization for the set of L_{o□}/L_{o∀} formulas valid over the class of dynamical posets?
- Is there a natural axiomatization for the set of L_{o∀} formulas valid over the Cantor space/ℝⁿ?
- ▶ Is there a natural axiomatization for the set of \mathcal{L}_{\diamond} formulas valid over \mathbb{R} ?

- Is there a natural axiomatization for the set of L_{o□}/L_{o∀} formulas valid over the class of dynamical posets?
- Is there a natural axiomatization for the set of L_{o∀} formulas valid over the Cantor space/ℝⁿ?
- ► Is there a natural axiomatization for the set of L_◊ formulas valid over ℝ?
- ▶ Does Kremer's logic over L_□ have a natural axiomatization?

- Is there a natural axiomatization for the set of L_{o□}/L_{o∀} formulas valid over the class of dynamical posets?
- Is there a natural axiomatization for the set of L_{o∀} formulas valid over the Cantor space/ℝⁿ?
- ► Is there a natural axiomatization for the set of L_◊ formulas valid over ℝ?
- ▶ Does Kremer's logic over *L*_□ have a natural axiomatization?
- ► Is there a different topological interpretation for □ validating the standard LTL axioms?
Future work

- Is there a natural axiomatization for the set of L_{o□}/L_{o∀} formulas valid over the class of dynamical posets?
- Is there a natural axiomatization for the set of L_{◊∀} formulas valid over the Cantor space/ℝⁿ?
- ► Is there a natural axiomatization for the set of L_◊ formulas valid over ℝ?
- ▶ Does Kremer's logic over *L*_□ have a natural axiomatization?
- ► Is there a different topological interpretation for □ validating the standard LTL axioms?

Yes! [Boudou et al., JELIA'19]

Future work

- Is there a natural axiomatization for the set of L_{o□}/L_{o∀} formulas valid over the class of dynamical posets?
- Is there a natural axiomatization for the set of L_{◊∀} formulas valid over the Cantor space/ℝⁿ?
- ► Is there a natural axiomatization for the set of L_◊ formulas valid over ℝ?
- ▶ Does Kremer's logic over L_□ have a natural axiomatization?
- ► Is there a different topological interpretation for □ validating the standard LTL axioms?

Yes! [Boudou et al., JELIA'19]

Děkuji!