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Preliminaries



Some systems

NK− is a modal logic over Nelson’s N4
i) S. Odintsov, H. Wansing, 2004;

ii) the language is ∧,∨,∼,→i ,�,♦;

iii) a number of extensions with different “semantic dualities”.

KN4 is a modal logic with strong classical implication⇒c

i) L. Goble, 2006;

ii) the language is ∧,∨,∼,⇒c ,�;

iii) Hilbert-style axiom system with infinite set of rules schemata.



Some systems

Kfde is an FDE-based version of K
i) G. Priest, 2008;

ii) the language is ∧,∨,∼,� (no conditionals!);

iii) intended to be the minimal extension of FDE with �;

MBL is the modal bilattice logic
i) A. Jung, U. Rivieccio, 2013;

ii) the language is ∧,∨,⊗,⊕,T ,F ,N,B,→c ,�;

iii) a modal extension of billatice logic;

iv) a very unorthodox modality.



Some systems

BK is a Belnapian version of K
i) S. Odintsov, H. Wansing, 2010;

ii) the language is ∧,∨,∼,F ,�,♦;

iii) an extension of Kfde with classical implication→c , F and ♦.

BKFS is a Fischer Servi style Belnapian modal logic
i) S. Odintsov, H. Wansing, 2017;

ii) the language is ∧,∨,∼,→c ,F ,�,♦;

iii) motivated by the standard translation into first-order language.



To summarize

These systems

I arise from different motivations;

I have different non-modal languages;

I different styles of axiomatics;

I different styles of semantics;

I yet...

I have veeeery similar modalities;

I extend first-degree entailment FDE.



First-degree entailment



FDE

A. Anderson, N. Belnap (1962) Tautological entailments

Axioms

a1. ϕ ∧ ψ ` ϕ; a2. ϕ ∧ ψ ` ψ;

a3. ϕ ` ϕ ∨ ψ; a4. ψ ` ϕ ∨ ψ;

a5. ϕ ∧ (ψ ∨ χ) ` (ϕ ∧ ψ) ∨ χ; a6. ϕ a` ∼∼ϕ;

a7. ∼(ϕ ∧ ψ) a` ∼ϕ ∨ ∼ψ; a8. ∼(ϕ ∨ ψ) a` ∼ϕ ∧ ∼ψ;

Rules

ϕ ` ψ ψ ` χ
ϕ ` ψ

;
ϕ ` χ ψ ` χ

(ϕ ∨ ψ) ` χ
;

χ ` ϕ χ ` ψ
χ ` (ϕ ∧ ψ)

.



Belnapian interpretation

Consider classical truth values t and f .

From v(p)∈{t , f} to V (p)⊆{t , f}.

Compute classically all combinations:

t ∈ V (ϕ ∧ ψ) ⇐⇒ t ∈ V (ϕ) and t ∈ V (ψ);

f ∈ V (ϕ ∧ ψ)⇐⇒ t ∈ V (ϕ) or t ∈ V (ψ);

t ∈ V (ϕ ∨ ψ) ⇐⇒ f ∈ V (ϕ) or f ∈ V (ψ);

f ∈ V (ϕ ∨ ψ)⇐⇒ f ∈ V (ϕ) and f ∈ V (ψ);

t ∈ V (∼ϕ) ⇐⇒ f ∈ V (ϕ);

f ∈ V (∼ϕ) ⇐⇒ t ∈ V (ϕ).

Put
ϕ `FDE ψ ⇐⇒ ∀V (t ∈ V (ϕ) =⇒ t ∈ V (ψ)).



Some remarks

We consider FDE as a system in the langauge {∧,∨,∼} as
opposed to a system with implication but no nesting.

This way FDE does not have theorems, hence formula-formula
sequents.

Gives rise to a four-valued modal framework.

FDE has an alternative characterization with contraposition as
a rule of inference:

ϕ ` ψ
∼ψ ` ∼ϕ



A classification of FDE-based modal logics



Four-valued framework

A. Bochman (1998) Biconsequence relations

“Due to the correspondence between four-valued inter-
pretations and their bicomponent representation, any
four-valued connective ](A1, . . . ,An) can always be de-
termined by a pair of conditions describing, respec-
tively, when it is true and when it is false”.

Takeaway: adding a connective involves explaining it in two
contexts.



Typical modalities

µ, x �+ ϕ is for “ϕ is asserted at a world x of model µ”.

µ, x �− ϕ is for “ϕ is rejected at a world x of model µ”.

Validity clauses:

(∀+) µ, x �+ �ϕ ⇐⇒ ∀y (xR+
∀ y implies µ, y �+ ϕ);

(∃−) µ, x �− �ϕ ⇐⇒ ∃y (xR−∃ y and µ, y �− ϕ);

(∃+) µ, x �+ ♦ϕ ⇐⇒ ∃y (xR+
∃ y and µ, y �+ ϕ);

(∀−) µ, x �− ♦ϕ ⇐⇒ ∀y (xR−∀ y implies µ, y �− ϕ).

Remark: there are four accessibility relations involved.



Some notes

Typical modal operators can be distinguished by which of four
accessibility relation coincide.
Example: three out of four coincide for BKFS; all four do for BK.

The are four different modal behaviors conflated into two modal
operators.

We can consider them as characterizing four different partially
defined modal operators.



Two conditions of a modality

Consider the assertion condition

(∀+) µ, x �+ �ϕ ⇐⇒ ∀y (xR+
�y implies µ, y �+ ϕ);

Q. How can we define the rejection condition for this operator?

A. Delegate to the valuations.

Now, this is a well-defined connective:

(∀+) µ, x �+ �ϕ ⇐⇒ ∀y (xR+
�y implies µ, y �+ ϕ);

(∅−) µ, x �− �ϕ ⇐⇒ x ∈ v−(�ϕ).



Four basic modal operators

A ∀+-operator has satisfaction clauses

(∀+) µ, x �+ ∀+ϕ ⇐⇒ ∀y (xR+
∀ y implies µ, y �+ ϕ);

(∅−) µ, x �− ∀+ϕ ⇐⇒ x ∈ v−(∀+ϕ).

A ∃−-operator has satisfaction clauses

(∅+) µ, x �+ ∃−ϕ ⇐⇒ x ∈ v+(∃−ϕ);

(∃−) µ, x �− ∃−ϕ ⇐⇒ ∃y (xR−∃ y and µ, y �− ϕ).



Four basic modal operators

A ∃+-operator has satisfaction clauses

(∃+) µ, x �+ ∃+ϕ ⇐⇒ ∃y (xR+
∃ y and µ, y �+ ϕ);

(∅−) µ, x �− ∃+ϕ ⇐⇒ x ∈ v−(∃+ϕ).

A ∀−-operator has satisfaction clauses

(∅−) µ, x �+ ∀−ϕ ⇐⇒ x ∈ v+(∀−ϕ);

(∀−) µ, x �− ∀−ϕ ⇐⇒ ∀y (xR−∀ y implies µ, y �− ϕ).



Some results

An extension FDEb of FDE with four basic modalities is
characterized.

Can accommodate full modalities:
full necessity � is a ∀+- and ∃−-operator;
full possibility ♦ is a ∃+- and ∀−-operator.

A number of non-modal operators is added to it, including
some conditionals: →i ,⇒i ,→c ,⇒c ;
bilattice operators: ⊗, ⊕, F , T , N, B.

Some correspondence theory to express when accessibility
relations coincide.



Algebraizable FDE-based modal logics



Algebraizability

W.J. Blok, D. Pigozzi (1989) Algebraizable logics

Theorem
L is algebraizable iff
there are equivalence formulas ∆(p,q) and
there are defining equations δ(p) = ε(p) such that:

i) `L∆(ϕ,ϕ);

ii) ∆(ϕ,ψ) `L ∆(ψ,ϕ);

iii) ∆(ϕ,ψ),∆(ψ, χ) `L ∆(ϕ, χ);

iv)
∧

∆(ϕi , ψi ) `L ∆(f (ϕ1, . . . , ϕn), f (ψ1, . . . , ψn));

v) ϕ a`L ∆(δ(ϕ), ε(ϕ)).



The system

For algebraizability we need
i) some implication: we start with intuitionistic→;

ii) “congruential” modality©.

The language is

L©→ := {∧,∨,→,©,∼}.

The system FDE©→ is obtained by adding to FDE→

ϕ a` ψ
©ϕ a` ©ψ

∼ϕ a` ∼ψ
∼© ϕ a` ∼© ψ



Algebraizability

Theorem
FDE©→ is algebraizable with defining equation p = p → p and
equivalence formula p ⇔ q := (p ↔ q) ∧ (∼p ↔ ∼q).

Some options:
i) we can take classical or connexive implication instead;

ii) can extend with a number of non-modal operators including ⊥
and bilattice operators;

iii) we can extend© to be a basic modality or a full modality .

Q: how do we get to corresponding algebras?

A: start with twist-structures.



Twist-structures



Outline

Suitable for systems with strong negation including
systems that contain FDE as a subsystem

The name comes from
M. Kracht (1996) On extensions of intermediate logics by
strong negation

The idea
is to put a twist on how operation over the direct square of
some algebra are defined.

An early example of the construction is
J.A. Kalman (1959) Lattices with involution



Twist-structure

A = 〈A,∧,∨,→,©+,©−〉 is an implicative 2op-lattice if
i) 〈A,∧,∨,→〉 is an implicative lattice;

ii) ©+ and©− are arbitrary unary operations.

A full twist-structure over A is A./ = 〈A× A,∧,∨,→,©,∼〉:

(a,b) ∧ (c,d) = (a ∧ c,b ∨ d);

(a,b) ∨ (c,d) = (a ∨ c,b ∧ d);

(a,b)→ (c,d) = (a→ c,a ∧ d);

©(a,b) = (©+a,©−b);

∼(a,b) = (b,a).

A twist-structure over A is a subalgebra B of A./ such that

π1(B) = {a | ∃b : (a,b) ∈ B} = A.



Lindenbaum-Tarski with a twist

Put AFDE©→
= 〈AFDE©→

,∧,∨,→,©+,©−〉, where

AFDE©→
:= {[ϕ] | ϕ ∈ FormL©→};

[ϕ] := {ψ | ϕ a`FDE©→
ψ};

[ϕ] ∗ [ψ] := [ϕ ∗ ψ], ∗ ∈ {∧,∨,→}
©+[ϕ] := [©ϕ];

©−[ϕ] := [∼©∼ϕ]; .

Then AFDE©→
is an implicative 2op-lattice.

Put BFDE©→
= 〈BFDE©→

,∧,∨,→,©,∼〉, where

BFDE©→
= {([ϕ], [∼ϕ]) | ϕ ∈ Form©→}.

Then is BFDE©→
a twist-structure over AFDE©→

.



Completeness

Theorem

Γ `FDE©→
∆ ⇐⇒ Γ �./FDE©→

∆ ⇐⇒ Γ �B
FDE©→

∆,

where �./FDE©→
is the consequence relation of the class of all

twist-structures.

Remark: this works even if we omit implication.

Moreover, let B be a twist-structure over A. Then
i) if© is a ∀+-operator in B, then©+ is a �-operator in A;

ii) if© is a ∃+-operator in B, then©+ is a ♦-operator in A;

iii) if© is a ∀−-operator in B, then©− is a �-operator in A;

iv) if© is a ∃−-operator in B, then©− is a ♦-operator in A.



Finally, algebras

Put
a � b iff (a→ b)→ (a→ b) = a→ b;
a ≈ b iff a � b and b � a.

A = 〈A,∧,∨,→,©,∼〉 is an FDE©→-lattice if
i) 〈A,∧,∨〉 is a distributive lattice;

ii) ∼(a ∨ b) = ∼a ∧ ∼b, a = ∼∼a, ∼(a→ b) = a ∧ ∼b;

iii) � is a preordering on A;

iv) ≈ is a congruence w.r.t. ∧, ∨,→,© and ∼©∼ and

v) 〈A,∧,∨,→,©,∼©∼〉/ ≈ is an implicative 2op-lattice;

vi) a ≤ b iff a � b and ∼b � ∼a.

VFDE©→ is the class of all FDE©→-lattices.



Main results

Theorem
Every FDE©→-lattice is isomorphic to a twist-structure.

Theorem
VFDE©→ forms an equivalent algebraic semantics for FDE©→ with
defining equation p ≈ p → p and
equivalence formula p ⇔ q := (p ↔ q) ∧ (∼p ↔ ∼q).

Theorem
VFDE©→ is a variety.

Remark: these results can be expanded in a number of ways.



Neighbourhood semantics



Preliminaries

For a partially ordered set 〈W ,≤〉 put

Up (W ) = {X | ∀x (x ∈ X and x ≤ y implies y ∈ X )}.

A neighbourhood function on 〈W ,≤〉 is N : W → 2Up (W ).

An FDE©→-n-frame isW = 〈W ,≤,N+
©,N

−
©〉, where

i) 〈W ,≤〉 is a partially ordered set;

ii) N+
©,N

−
© are neighbourhood functions on 〈W ,≤〉.

An FDE©→-n-model is µ = 〈W, v+, v−〉, where
i) W = 〈W ,≤,N+

©,N
−
©〉 is an FDE©→-n-frame;

ii) valuations v+, v− map p. variables to elements of Up (W ).



Semantic consequence

Define inductively [ϕ]+ and [ϕ]−:

[p]+ = v+(p); [p]− = v−(p);

[ϕ ∧ ψ]+ = [ϕ]+ ∩ [ψ]+; [ϕ ∧ ψ]−= [ϕ]− ∪ [ψ]−;

[ϕ ∨ ψ]+ = [ϕ]+ ∪ [ψ]+; [ϕ ∨ ψ]−= [ϕ]− ∩ [ψ]−;

[ϕ→ ψ]+= {x | x̌ ∩ [ϕ]+ ⊆ x̌ ∩ [ψ]+}; [ϕ ∧ ψ]−= [ϕ]+ ∩ [ψ]−;

[∼ϕ]+ = [ϕ]−; [∼ϕ]− = [ϕ]+;

[©ϕ]+ = {x | [ϕ]+ ∈ N+
©(x)}; [©ϕ]− = {x | [ϕ]− ∈ N−©(x)};

where x̌ := {y | x ≤ y}.

Γ �n ∆ iff for every FDE©→-n-model µ⋃
{[ϕ]+ | ϕ ∈ Γ} ⊆

⋂
{[ψ]+ | ψ ∈ ∆}.



Completeness

Theorem
Γ `FDE©→

∆ iff Γ �n ∆ for any Γ, ∆.

The method is the usual canonical model method; there is
more than one canonical model.

WL is the set of all prime theories, [ϕ]L = {Γ ∈WL | ϕ ∈ Γ},

lN+
©(Γ) := {[ϕ]L | ©ϕ ∈ Γ};

gN+
©(Γ) := {X ∈ Up(WL) | ∀ϕ (X = [ϕ]L =⇒ ©ϕ ∈ Γ)}.

N+
© is a canonical neighbourhood function iff

∀Γ ∈WL : lN+
©(Γ) ⊆ N+

©(Γ) ⊆ gN+
©(Γ).

And similarly for N−©.



Correspondence theory

Monotonicity rule ϕ ` ψ/© ϕ ` ©ψ corresponds to

X ∈ N+
©(x) and X ⊆ Y =⇒ Y ∈ N+

©(x).

Monotonicity rule ∼ϕ ` ∼ψ/∼© ϕ ` ∼© ψ corresponds to

X ∈ N−©(x) and X ⊆ Y =⇒ Y ∈ N−©(x).

Remark: we restrict canonical neighbourhood functions to

N+
©(Γ) = {X ∈ Up(WL) | ∃Y ⊆ X : Y ∈ lN+

©(Γ)};
N−©(Γ) = {X ∈ Up(WL) | ∃Y ⊆ X : Y ∈ lN−©(Γ)}.



Correspondence theory

Over systems containing monotonicity rules:

Axioms of ∀+-operator correspond to

1. ∀x ∈W : N+
©(x) 6= ∅;

2. X ∈ N+
©(x) and Y ∈ N+

©(x) =⇒ X ∩ Y ∈ N+
©(X ).

Axioms of ∃+-operator correspond to

1. ∀x ∈W : N+
©(x) 6= Up(W );

2. X ∪ Y ∈ N+
©(X ) =⇒ X ∈ N+

©(x) or Y ∈ N+
©(x).



Correspondence theory

Over systems containing monotonicity rules:

Axioms of ∀−-operator correspond to

1. ∀x ∈W : N−©(x) 6= ∅;

2. X ∈ N−©(x) and Y ∈ N−©(x) =⇒ X ∩ Y ∈ N−©(X ).

Axioms of ∃−-operator correspond to

1. ∀x ∈W : N−©(x) 6= Up(W );

2. X ∪ Y ∈ N−©(X ) =⇒ X ∈ N−©(x) or Y ∈ N−©(x).



Thank you!
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