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Motivation.

1 Shelah conjectured a eventual categoricity transfer in AECs.

2 Grossberg-VanDieren (2006): Partial answer by assuming tameness

and categoricity in a successor cardinal.

3 Boney (2014): Under the existence of a proper class of (almost) strongly

compact cardinals, any AEC is tame. Shelah-Vasey (2018): Categoricity
transfer theorem dropping categoricity assumption in successor cardinal

4 Boney-Z. (2015): If a proper class of almost strongly compact cardinals
exists, any MAEC is d-tame.

5 Hirvonen-Hyttinen (2009): Under tame-like assumptions, a categoricity
transfer theorem holds for homogeneous MAECs.

6 Z. (2012): A stability transfer theorem for d-tame MAECs holds.

7 Lieberman-Rosický (2017): Alternative proof of set-theoretical

consistency of d-tameness on MAECs by using tools of Accessible
Categories.
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Lieberman-Rosický-Z.: By using those tools, proving set-theoretical

consistency of tameness in more general settings (e.g., V-pseudo

metric spaces, V a cocontinuous quantale).

Why quantales?

Flagg (1997): Any topological space can be seen as a V-pseudo

metric space for a suitable quantale V.

We can deal with C∗-algebras by using quantales

(Borceux-Rosický-van den Bossche).
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Cocontinuous quantales.

Definition.

(Commutative) cocontinuous quantale: V = ⟨V ,+,0,≤⟩ such that

1 ⟨V ,≤⟩ is a cocontinuous (i.e., for any x ∈ V , x = ⋀{y ∈ V ∶ x ≪ y})
complete lattice with bottom 0 and top∞.

2 ⟨V ,+,0⟩ is a (commutative) monoid.

3 Meets distribute with respect to + in both left and right side.

Examples.

Classical truth values: V ∶= {0,∞}.

Distances: V ∶= [0,∞] ⊆ R ∪ {∞}.
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V-pseudo metric spaces

V-pseudo metric space: ⟨M,d⟩ provided that M ≠ ∅ and d ∶ M ×M → V

satisfies:

1 (Reflexivity) for all x ∈M d(x ,x) = 0.

2 (Symmetry) for all x ,y ∈M we have that d(x ,y) = d(y ,x).

3 (Transitivity) for all x ,y ,z ∈M, d(x ,y) ≤ d(x ,z) + d(z,y).

Definition.

Given ⟨M,d⟩ a V-pseudo metric space, we say that M is separated iff

d(x ,y) = 0 implies that x = y for any x ,y ∈M.
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V-pseudo metric spaces

Examples.

1 A [0,∞]-pseudo metric space ⟨M,d⟩ yields a distance mapping

d ∶ M ×M → [0,∞]. If d is reflexive, transitive, symmetric and

separated, we have that ⟨M,d⟩ is a metric space.

2 A discrete metric space is a {0,∞}-pseudo metric space.

3 Let ⟨V ,+,0,≤⟩ be a cocontinuous quantale. V itself is a V-space

provided with d(x ,y) ∶= (y ∸ x) + (x ∸ y).

4 Let ⟨M,d⟩ be a V-pseudo metric space and 1 ≤ k < ω. Then

d ∶ Mk ×Mk → V defined as

dk((a1,⋯,ak), (b1⋯,bk)) ∶= ⋁{d(ai ,bi) ∶ 1 ≤ i ≤ k} is a V-pseudo

metric space.
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Pseudo-metric structures (cf. Continuous Logic)

Given a language in the setting of cocontinuous logic L, a V-pseudo

metric structure based on L is a tupleM = ⟨M;◻M ∶ ◻ ∈ L⟩ defined as

follows:

1 If ◻ ∈ L is a constant symbol, define ◻M as an element in M.

2 If ◻ ∈ L is a relational symbol of arity 1 ≤ k < ω, define ◻M ∶ Mk → V

as nonexpanding map.

3 If ◻ ∈ L is a function symbol of arity 1 ≤ k < ω, define ◻M ∶Mk →M

as a nonexpanding map.

V -embeddings

Let V = ⟨V ,+,0,≤⟩ be a cocontinuous quantale andM1 = ⟨M1,d1⟩,
M2 = ⟨M2,d2⟩ be V-pseudo metric structures in the same language L.

An L-embedding h ∶M1 →M2 is a mapping h ∶M1 → M2 which

preserves the L-structure.
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Pseudo-V-Abstract Elementary Classes

⟨K,≺K⟩, K a class of V-pseudo metric structures in the same

language, where ≺K satisfies:

1 ≺K is stronger than ⊆.

2 K is closed under L-isomorphisms.

3 Coherence: ifM0 ⊆M1 ≺KM2 andM0 ≺KM2 thenM0 ≺KM1.

4 K is closed under directed colimits.

5 Downward Löhenheim-Skolem.

K-embeddings

L-embeddings f ∶M →N such that f [M] ≺K N .
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Galois types (f0 ∶ M → N0,a0) ∼ (f1 ∶ M → N1,a1)

M

●
a0

a1

f0

f1

N0

N1

●

N

●

g0

g1
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Galois types as a V-pseudo metric space

Definition

Given p,q ∈ ga-Sα(M), we define d(p,q) ∈ V as follows:

d(p,q) ∶= ⋀{d(a,b) ∶ a ⊧ p,b ⊧ q} ∈ V

p
q

●

●

a
b

d(p,q)
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< κ-tameness

p q
ε

p ↾ h q ↾ h
ε

∃ h ∶N →M
∥N∥ < κ

Pedro H. Zambrano (U. Nal de Colombia) Tameness in classes of generalized metric str. August 16th, 2019 11 / 16



< κ-tameness

p q
ε

p ↾ h q ↾ h
ε

∃ h ∶N →M
∥N∥ < κ

Pedro H. Zambrano (U. Nal de Colombia) Tameness in classes of generalized metric str. August 16th, 2019 11 / 16



Theorem (Lieberman-Rosický-Z.)

Assuming the existence of a µ-strongly compact cardinal bigger than

∣V ∣∣V ∣ for any cardinal µ, any pseudo-V-AEC K is strongly V-tame.

Key points of the proof.

L: (f0, f1,a0,a1) -f0 ∶M→N0, f1 ∶M →N1 and ai ∈ Ni -.

Lδ: (f0, f1,a0,a1) -f0 ∶M→N0, f1 ∶M→ N1 and ai ∈ Ni codifying

d(a0,a1) = δ-.

The full image of the forgetful functor Gδ ∶ Lδ → L is accessible (by

Brooke-Taylor - Rosický).

Write any (f0, f1,a0,a1) as a directed colimit of a (cofinal)

sequence of restrictions to small ≺K-structures (which by

hypothesis are close enough)

By the accessibility of the full image of Gδ ’s, (f0, f1,a0,a1) belongs

to the full image of a suitable Gδ, and so the respective

Galois-types ga-tp(a0/f0), ga-tp(a1/f1) are close enough.
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More general settings

Definition (partial V-metric spaces)

Given V = ⟨V ,+,0,≤⟩ a cocontinuous quantale, a partial V-metric

space is a pair ⟨M,d⟩ provided that M is a set and d ∶ M ×M → V

satisfies the following properties:

1 (Equality) for all x ,y ∈M d(x ,x) = d(y ,y) = d(x ,y) implies x = y .

2 (Symmetry) for all x ,y ∈M we have that d(x ,y) = d(y ,x).

3 (Transitivity) for all x ,y ,z ∈M, d(x ,y) + d(z,z) ≤ d(x ,z) + d(z,y).

4 (Small self-distances) d(x ,x) ≤ d(x ,y).

Remark

Why partial V -metric spaces?

1 Partial V -metric spaces allow to defined analogous to Ω-fuzzy

sets (Ω a -complete- Heytting algebra).

2 Sheaves on Ω carry a definition of a fuzzy-equality notion on Ω.
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Model-theoretic forcing.

Model-theoretical forcing in metric spaces: Ben-Yaacov and Iovino

(2009) -omitting types theorem and separable quotient problem in

Banach spaces-.

Model-theoretical forcing in Booolean and Heytting valued

structures.
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Model-theoretic forcing.

Model-theoretical forcing in metric spaces: Ben-Yaacov and Iovino

(2009) -omitting types theorem and separable quotient problem in

Banach spaces-.

Model-theoretical forcing in Booolean and Heytting valued

structures.

Ongoing project (Moncayo-Z.)

Extending Ben-Yaacov - Iovino work to pseudo-V-metric spaces.

Understanding model-theoretic forcing on quantale-valued

structures and compare it with the BY-I’s work.
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Děkuji!

Old town Prague - view from Vrtba Garden.
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