Tameness in classes of generalized metric structures: quantale-spaces, fuzzy sets, and sheaves (Joint work with Michael Lieberman and Jiří Rosický)

Pedro H. Zambrano

Departamento de Matemáticas Universidad Nacional de Colombia, Bogota.

> Logic Colloquium Prague, August 16th, 2019

Motivation.

- Shelah conjectured a eventual categoricity transfer in AECs.
- Grossberg-VanDieren (2006): Partial answer by assuming tameness and categoricity in a successor cardinal.
- Boney (2014): Under the existence of a proper class of (almost) strongly compact cardinals, any AEC is tame. Shelah-Vasey (2018): Categoricity transfer theorem dropping categoricity assumption in successor cardinal
- Boney-Z. (2015): If a proper class of almost strongly compact cardinals exists, any MAEC is d-tame.
- Hirvonen-Hyttinen (2009): Under tame-like assumptions, a categoricity transfer theorem holds for homogeneous MAECs.
- Z. (2012): A stability transfer theorem for d-tame MAECs holds.
- Lieberman-Rosický (2017): Alternative proof of set-theoretical consistency of d-tameness on MAECs by using tools of Accessible Categories.

Lieberman-Rosický-Z.: By using those tools, proving set-theoretical consistency of tameness in more general settings (e.g., V-pseudo metric spaces, \mathbb{V} a cocontinuous quantale).

Why quantales?

- Flagg (1997): Any topological space can be seen as a V-pseudo metric space for a suitable quantale \mathbb{V} .
- We can deal with C*-algebras by using quantales (Borceux-Rosický-van den Bossche).

Cocontinuous quantales.

Definition.

(Commutative) **cocontinuous** quantale: $\mathbb{V} = \langle V, +, 0, \leq \rangle$ such that

- \bigcirc $\langle V, \leq \rangle$ is a cocontinuous (i.e., for any $x \in V$, $x = \bigwedge \{y \in V : x \ll y\}$) complete lattice with bottom 0 and top ∞ .
- (V, +, 0) is a (commutative) monoid.
- Meets distribute with respect to + in both left and right side.

Examples.

- Classical truth values: $V := \{0, \infty\}$.
- Distances: $V := [0, \infty] \subseteq \mathbb{R} \cup \{\infty\}$.

V-pseudo metric spaces

 \mathbb{V} -pseudo metric space: $\langle M, d \rangle$ provided that $M \neq \emptyset$ and $d : M \times M \to V$ satisfies:

- (Reflexivity) for all $x \in M$ d(x,x) = 0.
- (Symmetry) for all $x, y \in M$ we have that d(x, y) = d(y, x).
- (Transitivity) for all $x, y, z \in M$, $d(x, y) \le d(x, z) + d(z, y)$.

Definition.

Given $\langle M, d \rangle$ a \mathbb{V} -pseudo metric space, we say that M is *separated* iff d(x, y) = 0 implies that x = y for any $x, y \in M$.

V-pseudo metric spaces

Examples.

- \bigcirc A $[0, \infty]$ -pseudo metric space (M, d) yields a distance mapping $d: M \times M \to [0, \infty]$. If d is reflexive, transitive, symmetric and separated, we have that $\langle M, d \rangle$ is a metric space.
- 2 A discrete metric space is a $\{0, \infty\}$ -pseudo metric space.
- **3** Let $(V, +, 0, \leq)$ be a cocontinuous quantale. V itself is a \mathbb{V} -space provided with d(x, y) := (y - x) + (x - y).
- **●** Let $\langle M, d \rangle$ be a \mathbb{V} -pseudo metric space and $1 \le k < \omega$. Then $d: M^k \times M^k \to V$ defined as $d_k((a_1, \dots, a_k), (b_1 \dots, b_k)) := \bigvee \{d(a_i, b_i) : 1 \le i \le k\}$ is a \mathbb{V} -pseudo metric space.

Pseudo-metric structures (cf. Continuous Logic)

Given a language in the setting of cocontinuous logic L, a \mathbb{V} -pseudo *metric structure* based on *L* is a tuple $\mathcal{M} = \langle M; \square^M : \square \in L \rangle$ defined as follows:

- If $\Box \in L$ is a constant symbol, define \Box^M as an element in M.
- If $\Box \in L$ is a relational symbol of arity $1 \le k < \omega$, define $\Box^M : M^k \to V$ as nonexpanding map.
- ③ If \Box ∈ L is a function symbol of arity $1 \le k < \omega$, define $\Box^M : M^k \to M$ as a nonexpanding map.

V-embeddings

Let $\mathbb{V} = \langle V, +, 0, \leq \rangle$ be a cocontinuous quantale and $\mathcal{M}_1 = \langle M_1, d_1 \rangle$, $\mathcal{M}_2 = \langle M_2, d_2 \rangle$ be \mathbb{V} -pseudo metric structures in the same language L. An *L*-embedding $h: \mathcal{M}_1 \to \mathcal{M}_2$ is a mapping $h: M_1 \to M_2$ which preserves the *L*-structure.

Pseudo-V-Abstract Elementary Classes

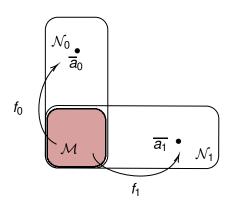
 $(\mathcal{K}, \prec_{\mathcal{K}}), \mathcal{K}$ a class of \mathbb{V} -pseudo metric structures in the same language, where $<_{\mathcal{K}}$ satisfies:

- \bigcirc $\prec_{\mathcal{K}}$ is stronger than \subseteq .
- Oherence: if $\mathcal{M}_0 \subseteq \mathcal{M}_1 \prec_{\mathcal{K}} \mathcal{M}_2$ and $\mathcal{M}_0 \prec_{\mathcal{K}} \mathcal{M}_2$ then $\mathcal{M}_0 \prec_{\mathcal{K}} \mathcal{M}_1$.
- \(\mathcal{K} \) is closed under directed colimits.
- Downward Löhenheim-Skolem.

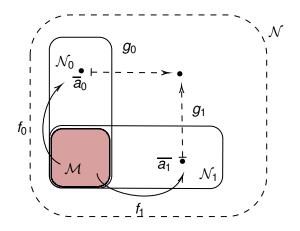
\mathcal{K} -embeddings

L-embeddings $f: \mathcal{M} \to \mathcal{N}$ such that $f[\mathcal{M}] \prec_{\mathcal{K}} \mathcal{N}$.

Galois types $(f_0: \mathcal{M} \to \mathcal{N}_0, \overline{a}_0) \sim (f_1: \mathcal{M} \to \mathcal{N}_1, \overline{a}_1)$



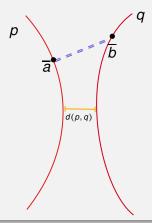
Galois types $(f_0: \mathcal{M} \to \mathcal{N}_0, \overline{a}_0) \sim (f_1: \mathcal{M} \to \mathcal{N}_1, \overline{a}_1)$



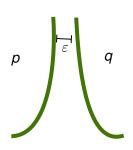
Galois types as a V-pseudo metric space

Definition

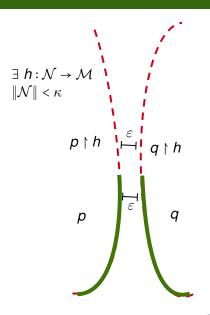
Given $p, q \in \text{ga-S}_{\underline{\alpha}}(M)$, we define $d(p, q) \in V$ as follows: $d(p, q) := \bigwedge \{d(\overline{a}, \overline{b}) : \overline{a} \models p, \overline{b} \models q\} \in V$



$< \kappa$ -tameness



$< \kappa$ -tameness



Theorem (Lieberman-Rosický-Z.)

Assuming the existence of a μ -strongly compact cardinal bigger than $|V|^{|V|}$ for any cardinal μ , any pseudo- \mathbb{V} -AEC \mathcal{K} is strongly \mathbb{V} -tame.

Key points of the proof.

- \mathcal{L} : $(f_0, f_1, a_0, a_1) f_0 : \mathcal{M} \to \mathcal{N}_0, f_1 : \mathcal{M} \to \mathcal{N}_1 \text{ and } a_i \in N_i$ -.
- \mathcal{L}_{δ} : $(f_0, f_1, a_0, a_1) f_0 : \mathcal{M} \to \mathcal{N}_0, f_1 : \mathcal{M} \to \mathcal{N}_1$ and $a_i \in \mathcal{N}_i$ codifying $d(a_0, a_1) = \delta$ -.
- The full image of the forgetful functor $G_{\delta}: \mathcal{L}_{\delta} \to \mathcal{L}$ is accessible (by Brooke-Taylor - Rosický).
- Write any (f_0, f_1, a_0, a_1) as a directed colimit of a (cofinal) sequence of restrictions to small $<_{\mathcal{K}}$ -structures (which by hypothesis are close enough)
- By the accessibility of the full image of G_{δ} 's, (f_0, f_1, a_0, a_1) belongs to the full image of a suitable G_{δ} , and so the respective Galois-types ga-tp(a_0/f_0), ga-tp(a_1/f_1) are close enough.

More general settings

Definition (partial V-metric spaces)

Given $\mathbb{V} = \langle V, +, 0, \leq \rangle$ a cocontinuous quantale, a partial \mathbb{V} -metric space is a pair (M, d) provided that M is a set and $d: M \times M \rightarrow V$ satisfies the following properties:

- (Equality) for all $x, y \in M$ d(x, x) = d(y, y) = d(x, y) implies x = y.
- (Symmetry) for all $x, y \in M$ we have that d(x, y) = d(y, x).
- (Transitivity) for all $x, y, z \in M$, $d(x, y) + d(z, z) \le d(x, z) + d(z, y)$.
- (Small self-distances) $d(x, x) \le d(x, y)$.

Remark

Why partial V-metric spaces?

- Partial V-metric spaces allow to defined analogous to Ω-fuzzy sets (Ω a -complete- Heytting algebra).
- Sheaves on Ω carry a definition of a fuzzy-equality notion on Ω .

Model-theoretic forcing.

- Model-theoretical forcing in metric spaces: Ben-Yaacov and Iovino (2009) -omitting types theorem and separable quotient problem in Banach spaces-.
- Model-theoretical forcing in Booolean and Heytting valued structures.

Model-theoretic forcing.

- Model-theoretical forcing in metric spaces: Ben-Yaacov and Iovino (2009) -omitting types theorem and separable quotient problem in Banach spaces-.
- Model-theoretical forcing in Booolean and Heytting valued structures.

Ongoing project (Moncayo-Z.)

- Extending Ben-Yaacov Iovino work to pseudo-V-metric spaces.
- Understanding model-theoretic forcing on quantale-valued structures and compare it with the BY-I's work.

References

- [Belo09] I. Ben-Yaacov and J. Iovino, *Model theoretic forcing in analysis*, APAL 158 pp 163–174, 2009.
- [FI97] R. Flagg, Quantales and continuity spaces, Alg. Univ. 37 pp. 257-276, 1997.
- [LiRoZa18] M. Lieberman, J. Rosický and P. Zambrano, Tameness in classes of generalized metric structures, arxiv:1810.02317. Submitted.

Děkuji!

Old town Prague - view from Vrtba Garden.