Admissibility of Cut for Sequent Calculus related to *n*-labelled Tableaux

Andrzej Indrzejczak

Department of Logic, University of Lodz

Logic Colloquium, Prague, August 11-16.2019

Classical Case:

Andrzej Indrzejczak

・ロト ・ 聞 ト ・ 浩 ト ・ 浩 ト … 浩

Classical Case:

 $\Gamma \Rightarrow \Delta$

Andrzej Indrzejczak

▲口▼→個▼★注▼▲注▼ … 注 … のへの

Classical Case:

 $\Gamma \Rightarrow \Delta$

Falsificationist approach: all elements of Γ true and all elements of Δ false.

Classical Case:

 $\Gamma \Rightarrow \Delta$

Falsificationist approach: all elements of Γ true and all elements of Δ false.

Verificationist approach: at least one element of Γ false or at least one of Δ true.

Classical Case:

 $\Gamma \Rightarrow \Delta$

Falsificationist approach: all elements of Γ true and all elements of Δ false.

Verificationist approach: at least one element of Γ false or at least one of Δ true.

 $FA \implies$ Hintikka-style tableaux;

Classical Case:

 $\Gamma \Rightarrow \Delta$

Falsificationist approach: all elements of Γ true and all elements of Δ false.

Verificationist approach: at least one element of Γ false or at least one of Δ true.

- $FA \implies$ Hintikka-style tableaux;
- $VA \implies$ Schütte-style SC (or Rasiowa dual tableaux).

Some History:

Andrzej Indrzejczak

注▶ ★ 注▶ - 注 -

Some History:

VA: Schröter [1955], Takahashi [1967], Rousseau [1967] \implies n-sequents $\Gamma_1 \mid \ldots \mid \Gamma_n$;

E 990

Some History:

VA: Schröter [1955], Takahashi [1967], Rousseau [1967] \implies n-sequents $\Gamma_1 \mid \ldots \mid \Gamma_n$;

FA: Surma [1971], Suchoń [1974], Carnielli [1991] \implies labelled tableaux.

Some History:

```
VA: Schröter [1955], Takahashi [1967], Rousseau [1967] \implies n-sequents \Gamma_1 \mid \ldots \mid \Gamma_n;
```

FA: Surma [1971], Suchoń [1974], Carnielli [1991] \implies labelled tableaux.

We use sequents of the form:

 $\Gamma_1 \mid \ldots \mid \Gamma_k \; \Rightarrow \; \Delta_1 \mid \ldots \mid \Delta_n$

Some History:

```
VA: Schröter [1955], Takahashi [1967], Rousseau [1967] \implies n-sequents \Gamma_1 \mid \ldots \mid \Gamma_n;
```

FA: Surma [1971], Suchoń [1974], Carnielli [1991] \implies labelled tableaux.

We use sequents of the form:

 $\Gamma_1 \mid \ldots \mid \Gamma_k \; \Rightarrow \; \Delta_1 \mid \ldots \mid \Delta_n$

where in case of VA:

 $\Gamma_1 \mid \ldots \mid \Gamma_k$ correspond to k undesignated values; $\Delta_1 \mid \ldots \mid \Delta_n$ to n designated ones;

Some History:

```
VA: Schröter [1955], Takahashi [1967], Rousseau [1967] \implies n-sequents \Gamma_1 \mid \ldots \mid \Gamma_n;
```

FA: Surma [1971], Suchoń [1974], Carnielli [1991] \implies labelled tableaux.

We use sequents of the form:

 $\Gamma_1 \mid \ldots \mid \Gamma_k \; \Rightarrow \; \Delta_1 \mid \ldots \mid \Delta_n$

where in case of VA:

 $\Gamma_1 \mid \ldots \mid \Gamma_k$ correspond to k undesignated values;

 $\Delta_1 \mid \ldots \mid \Delta_n$ to *n* designated ones;

whereas in FA it is just the opposite.

Verificationist/Falsificationist Version:

メロトメ 母 トメ ヨト メ ヨト ニヨー つえで

VA: Sequents of the form $\Gamma \mid \Delta \Rightarrow \Sigma$ which are satisfied in a L3-matrix iff some $\varphi \in \Gamma$ is 0, or some $\psi \in \Delta$ is 1/2, or some $\chi \in \Sigma$ is 1, under some *h*.

VA: Sequents of the form $\Gamma \mid \Delta \Rightarrow \Sigma$ which are satisfied in a L3-matrix iff some $\varphi \in \Gamma$ is 0, or some $\psi \in \Delta$ is 1/2, or some $\chi \in \Sigma$ is 1, under some *h*.

FA: Sequents of the form $\Gamma \Rightarrow \Delta \mid \Sigma$ which are falsified in a L3-matrix iff all $\varphi \in \Gamma$ are 1 and all $\psi \in \Delta$ are 1/2, and all $\chi \in \Sigma$ are 0, under some *h*.

VA: Sequents of the form $\Gamma \mid \Delta \Rightarrow \Sigma$ which are satisfied in a L3-matrix iff some $\varphi \in \Gamma$ is 0, or some $\psi \in \Delta$ is 1/2, or some $\chi \in \Sigma$ is 1, under some *h*.

FA: Sequents of the form $\Gamma \Rightarrow \Delta \mid \Sigma$ which are falsified in a L3-matrix iff all $\varphi \in \Gamma$ are 1 and all $\psi \in \Delta$ are 1/2, and all $\chi \in \Sigma$ are 0, under some *h*.

VA: Axioms are all sequents with $\Gamma \cap \Delta \cap \Sigma$ nonempty or (in Baaz, et al. version) $\varphi \mid \varphi \Rightarrow \varphi$

VA: Sequents of the form $\Gamma \mid \Delta \Rightarrow \Sigma$ which are satisfied in a L3-matrix iff some $\varphi \in \Gamma$ is 0, or some $\psi \in \Delta$ is 1/2, or some $\chi \in \Sigma$ is 1, under some *h*.

FA: Sequents of the form $\Gamma \Rightarrow \Delta \mid \Sigma$ which are falsified in a L3-matrix iff all $\varphi \in \Gamma$ are 1 and all $\psi \in \Delta$ are 1/2, and all $\chi \in \Sigma$ are 0, under some *h*.

VA: Axioms are all sequents with $\Gamma \cap \Delta \cap \Sigma$ nonempty or (in Baaz, et al. version) $\varphi \mid \varphi \Rightarrow \varphi$

FA: A sequent is counted as an axiom if either $\Gamma \cap \Delta$ or $\Gamma \cap \Sigma$ or $\Delta \cap \Sigma$ is nonempty (or of the form: $\varphi \Rightarrow \varphi \mid, \varphi \Rightarrow \mid \varphi, \Rightarrow \varphi \mid \varphi)$

Verificationist/Falsificationist Version – rules:

Andrzej Indrzejczak

メロトメ 母 トメ ヨト メ ヨト ニヨー つえで

Verificationist/Falsificationist Version – rules:

$$\begin{array}{l} (\neg \mid \Rightarrow) \quad \frac{\Gamma \mid \Delta \Rightarrow \Sigma, \varphi}{\neg \varphi, \Gamma \mid \Delta \Rightarrow \Sigma} \quad (\mid \neg \Rightarrow) \quad \frac{\Gamma \mid \varphi, \Delta \Rightarrow \Sigma}{\Gamma \mid \neg \varphi, \Delta \Rightarrow \Sigma} \\ (\Rightarrow \neg) \quad \frac{\varphi, \Gamma \mid \Delta \Rightarrow \Sigma}{\Gamma \mid \Delta \Rightarrow \Sigma, \neg \varphi} \quad \text{versus} \end{array}$$

Andrzej Indrzejczak

メロトメ 母 トメ ヨト メ ヨト ニヨー つえで

Verificationist/Falsificationist Version – rules:

$$\begin{array}{l} (\neg \mid \Rightarrow) \quad \frac{\Gamma \mid \Delta \Rightarrow \Sigma, \varphi}{\neg \varphi, \Gamma \mid \Delta \Rightarrow \Sigma} \quad (\mid \neg \Rightarrow) \quad \frac{\Gamma \mid \varphi, \Delta \Rightarrow \Sigma}{\Gamma \mid \neg \varphi, \Delta \Rightarrow \Sigma} \\ (\Rightarrow \neg) \quad \frac{\varphi, \Gamma \mid \Delta \Rightarrow \Sigma}{\Gamma \mid \Delta \Rightarrow \Sigma, \neg \varphi} \quad \text{versus} \\ (\neg \Rightarrow) \quad \frac{\Gamma \Rightarrow \Delta \mid \Sigma, \varphi}{\neg \varphi, \Gamma \Rightarrow \Delta \mid \Sigma} \quad (\Rightarrow \neg \mid) \quad \frac{\Gamma \Rightarrow \varphi, \Delta \mid \Sigma}{\Gamma \Rightarrow \neg \varphi, \Delta \mid \Sigma} \\ (\Rightarrow \mid \neg) \quad \frac{\varphi, \Gamma \Rightarrow \Delta \mid \Sigma}{\Gamma \Rightarrow \Delta \mid \Sigma, \neg \varphi} \end{array}$$

▶ ★ 唐 ▶ ★ 唐 ▶ ▲ ● ◇ � @

Verificationist/Falsificationist Version – rules:

Andrzej Indrzejczak

メロトメ 母 トメ ヨト メ ヨト ニヨー つえで

$$\begin{array}{l} (\rightarrow \mid \Rightarrow) \quad \frac{\Gamma \mid \Delta \Rightarrow \Sigma, \varphi \quad \psi, \Gamma \mid \Delta \Rightarrow \Sigma}{\varphi \rightarrow \psi, \Gamma \mid \Delta \Rightarrow \Sigma} \quad (\mid \rightarrow \Rightarrow) \quad \frac{\Gamma \mid \varphi, \psi, \Delta \Rightarrow \Sigma \quad \psi, \Gamma \mid \Delta \Rightarrow \Sigma, \varphi}{\Gamma \mid \varphi \rightarrow \psi, \Delta \Rightarrow \Sigma} \\ (\Rightarrow \rightarrow) \quad \frac{\varphi, \Gamma \mid \varphi, \Delta \Rightarrow \Sigma, \psi \quad \varphi, \Gamma \mid \psi, \Delta \Rightarrow \Sigma, \psi}{\Gamma \mid \Delta \Rightarrow \Sigma, \varphi \rightarrow \psi} \quad \text{versus} \end{array}$$

メロトメ 母 トメ ヨト メ ヨト ニヨー つえで

$\begin{array}{l} \hline \text{Verificationist}/\text{Falsificationist Version} - \text{rules:} \\ (\rightarrow \models) \quad \frac{\Gamma \mid \Delta \Rightarrow \Sigma, \varphi \quad \psi, \Gamma \mid \Delta \Rightarrow \Sigma}{\varphi \rightarrow \psi, \Gamma \mid \Delta \Rightarrow \Sigma} \quad (\mid \rightarrow \Rightarrow) \quad \frac{\Gamma \mid \varphi, \psi, \Delta \Rightarrow \Sigma \quad \psi, \Gamma \mid \Delta \Rightarrow \Sigma, \varphi}{\Gamma \mid \varphi \rightarrow \psi, \Delta \Rightarrow \Sigma} \\ (\Rightarrow \rightarrow) \quad \frac{\varphi, \Gamma \mid \varphi, \Delta \Rightarrow \Sigma, \psi \quad \varphi, \Gamma \mid \psi, \Delta \Rightarrow \Sigma, \psi}{\Gamma \mid \Delta \Rightarrow \Sigma, \varphi \rightarrow \psi} \quad \text{versus} \\ (\Rightarrow \models) \quad \frac{\varphi, \Sigma \Rightarrow \Delta \mid \Gamma, \psi}{\Sigma \Rightarrow \Delta \mid \Gamma, \varphi \rightarrow \psi} \quad (\Rightarrow \rightarrow \models) \quad \frac{\Sigma \Rightarrow \Delta, \varphi \mid \Gamma, \psi \quad \varphi, \Sigma \Rightarrow \Delta, \psi \mid \Gamma}{\Sigma \Rightarrow \Delta, \varphi \rightarrow \psi \mid \Gamma} \\ (\Rightarrow \Rightarrow) \quad \frac{\Sigma \Rightarrow \Delta \mid \Gamma, \varphi \quad \Sigma \Rightarrow \Delta, \varphi, \psi \mid \Gamma}{\varphi \rightarrow \psi, \Gamma \Rightarrow \Delta \mid \Sigma} \end{array}$

Andrzej Indrzejczak

▲口▼→個▼★注▼▲注▼ … 注 … のへの

Theorems:

Andrzej Indrzejczak

メロトメ 母 トメ ヨト メ ヨト ニヨー つえで

Theorems:

 $\mathsf{VA}:\vdash\varphi\text{ iff there is a proof of}\Rightarrow\varphi$

Ξ.

▶ ★ 温 ▶ ★ 温 ▶ …

Theorems:

 $\mathsf{VA}:\vdash\varphi\text{ iff there is a proof of}\Rightarrow\varphi$

 $\mathsf{FA}:\vdash\varphi\text{ iff there is a proof of }\Rightarrow\varphi\mid\text{and }\Rightarrow\mid\varphi$

Theorems:

 $\mathsf{VA}:\vdash\varphi\text{ iff there is a proof of}\Rightarrow\varphi$

 $\mathsf{FA}:\vdash\varphi\text{ iff there is a proof of }\Rightarrow\varphi\mid\mathsf{and}\Rightarrow\mid\varphi$

Derivability:

Theorems:

- $\mathsf{VA}:\vdash\varphi\text{ iff there is a proof of}\Rightarrow\varphi$
- $\mathsf{FA} \colon \vdash \varphi \text{ iff there is a proof of} \Rightarrow \varphi \mid \mathsf{and} \Rightarrow \mid \varphi$

Derivability:

FA: $\Gamma \vdash \varphi$ iff there is a proof of $\Gamma \Rightarrow \varphi \mid$ and $\Gamma \Rightarrow \mid \varphi$

Theorems:

 $\mathsf{VA}:\vdash\varphi\text{ iff there is a proof of }\Rightarrow\varphi$

 $\mathsf{FA}:\vdash\varphi\text{ iff there is a proof of }\Rightarrow\varphi\mid\text{and }\Rightarrow\mid\varphi$

Derivability:

FA: $\Gamma \vdash \varphi$ iff there is a proof of $\Gamma \Rightarrow \varphi \mid$ and $\Gamma \Rightarrow \mid \varphi$ but!

VA: $\Gamma \vdash \varphi$ iff there is a proof of $\Pi(\Gamma) \Rightarrow \varphi$ where $\Pi(\Gamma)$ is one of the $2^{|\Gamma|}$ quasi-partitions of Γ .

Verificationist/Falsificationist Version – Cut:

▶ ★ 唐 ▶ ★ 唐 ▶ ▲ ● ◇ � @

Verificationist/Falsificationist Version – Cut:

$$\frac{\Gamma \mid \Delta \Rightarrow \Sigma, \varphi \quad \varphi, \Gamma \mid \Delta \Rightarrow \Sigma}{\Gamma \mid \Delta \Rightarrow \Sigma}$$

$$\frac{\Gamma \mid \Delta \Rightarrow \Sigma, \varphi \quad \Gamma \mid \varphi, \Delta \Rightarrow \Sigma}{\Gamma \mid \Delta \Rightarrow \Sigma}$$

$$\frac{\Gamma \mid \Delta, \varphi \Rightarrow \Sigma \quad \varphi, \Gamma \mid \Delta \Rightarrow \Sigma}{\Gamma \mid \Delta \Rightarrow \Sigma} \quad \text{versus}$$

 $\Delta \Rightarrow \Sigma$

ГΙ

Andrzej Indrzejczak

メロトメ 母 トメ ヨト メ ヨト ニヨー つえで

L

Verificationist/Falsificationist Version – Cut:

$$\frac{\Gamma \mid \Delta \Rightarrow \Sigma, \varphi \quad \varphi, \Gamma \mid \Delta \Rightarrow \Sigma}{\Gamma \mid \Delta \Rightarrow \Sigma}$$

$$\frac{\Gamma \mid \Delta \Rightarrow \Sigma, \varphi \quad \Gamma \mid \varphi, \Delta \Rightarrow \Sigma}{\Gamma \mid \Delta \Rightarrow \Sigma}$$

$$\frac{\Gamma \mid \Delta, \varphi \Rightarrow \Sigma \quad \varphi, \Gamma \mid \Delta \Rightarrow \Sigma}{\Gamma \mid \Delta \Rightarrow \Sigma} \quad \text{versus}$$

$$\begin{array}{cc} (3-cut) & \frac{\Sigma \Rightarrow \Delta \mid \Gamma, \varphi \quad \Sigma \Rightarrow \Delta, \varphi \mid \Gamma \quad \varphi, \Sigma \Rightarrow \Delta \mid \Gamma \\ & \Gamma \Rightarrow \Delta \mid \Sigma \end{array}$$

Andrzej Indrzejczak

メロトメ 母 トメ ヨト メ ヨト ニヨー つえで

Verificationist/Falsificationist Version – Cut:

$$\frac{\Gamma \mid \Delta \Rightarrow \Sigma, \varphi \quad \varphi, \Gamma \mid \Delta \Rightarrow \Sigma}{\Gamma \mid \Delta \Rightarrow \Sigma}$$

$$\frac{\Gamma \mid \Delta \Rightarrow \Sigma, \varphi \quad \Gamma \mid \varphi, \Delta \Rightarrow \Sigma}{\Gamma \mid \Delta \Rightarrow \Sigma}$$

$$\frac{\Gamma \mid \Delta, \varphi \Rightarrow \Sigma \quad \varphi, \Gamma \mid \Delta \Rightarrow \Sigma}{\Gamma \mid \Delta \Rightarrow \Sigma} \quad \text{versus}$$

$$\begin{array}{cc} (3-cut) & \frac{\Sigma \Rightarrow \Delta \mid \Gamma, \varphi \quad \Sigma \Rightarrow \Delta, \varphi \mid \Gamma \quad \varphi, \Sigma \Rightarrow \Delta \mid \Gamma \\ & \Gamma \Rightarrow \Delta \mid \Sigma \end{array}$$

For VA cut admissibility proved by Baaz, Fermüller and Zach [1994].

Andrzej Indrzejczak

||★ 唐 ▶ ★ 唐 ▶ ● ● ○ ○ ○ ○

reduction to atomic axioms;

- reduction to atomic axioms;
- In-p admissibility of Weakening (three versions);

- reduction to atomic axioms;
- In-p admissibility of Weakening (three versions);
- In h-p invertibility of all rules (with respect to all premisses);

- reduction to atomic axioms;
- In-p admissibility of Weakening (three versions);
- In h-p invertibility of all rules (with respect to all premisses);
- In the provide the second s

Cut Admissibility for Falsificationist Version – reduction to atomic axioms:

▶ ★ 唐 ▶ ★ 唐 ▶ ▲ 臣 → ���

メロトメ 母 トメ ヨト メ ヨト ニヨー つえで

Cut Admissibility for Falsificationist Version – reduction to atomic axioms:

$$\begin{array}{c} (\rightarrow \Rightarrow) \ \displaystyle \frac{\Sigma \Rightarrow \Delta, \varphi \mid \Gamma, \psi, \varphi \quad \Sigma \Rightarrow \Delta, \varphi, \varphi, \psi \mid \Gamma, \psi \quad \psi, \Sigma \Rightarrow \Delta, \varphi \mid \Gamma, \psi}{(\Rightarrow \rightarrow \mid) \quad \frac{\varphi \Rightarrow \psi, \Sigma \Rightarrow \Delta, \varphi \mid \Gamma, \psi}{\varphi \Rightarrow \psi, \Sigma \Rightarrow \Delta, \varphi \Rightarrow \psi \mid \Gamma}} & \varphi \Rightarrow \psi, \varphi, \Sigma \Rightarrow \Delta, \varphi \Rightarrow \psi, \varphi, \Sigma \Rightarrow \Delta, \varphi \Rightarrow \psi \mid \Gamma \end{array}$$
the same must be done for $\varphi \Rightarrow \psi, \Sigma \Rightarrow \Delta \mid \varphi \Rightarrow \psi, \Gamma$ and for $\Sigma \Rightarrow \Delta, \varphi \Rightarrow \psi \mid \Gamma, \varphi \Rightarrow \psi.$

▲口▼→個▼★注▼▲注▼ … 注 … のへの

Cut Admissibility for Falsificationist Version:

Andrzej Indrzejczak

▲口▼→個▼★注▼▲注▼ … 注 … のへの

Dragalin-style proof - three main cases:

Andrzej Indrzejczak

▶ ★ 唐 ▶ ★ 唐 ▶ ▲ 臣 → ���

Dragalin-style proof – three main cases:

1 at least one premiss axiomatic \implies trivial reduction;

Dragalin-style proof – three main cases:

- **(**) at least one premiss axiomatic \implies trivial reduction;
- 2 at least one premiss with parametric cut-formula \implies by induction on the height (all rules are substitutive);

Dragalin-style proof – three main cases:

- **(**) at least one premiss axiomatic \implies trivial reduction;
- at least one premiss with parametric cut-formula ⇒ by induction on the height (all rules are substitutive);
- Ill cut-formulae principal =>> by induction on the complexity of cut-formula (all rules are reductive).

Dragalin-style proof – three main cases:

- **(**) at least one premiss axiomatic \implies trivial reduction;
- at least one premiss with parametric cut-formula ⇒ by induction on the height (all rules are substitutive);
- Ill cut-formulae principal =>> by induction on the complexity of cut-formula (all rules are reductive).

Cut Admissibility for Falsificationist Version – principal cut-formulae:

▶ ★ 唐 ▶ ★ 唐 ▶ ▲ ● ◇ � @

Cut Admissibility for Falsificationist Version – principal cut-formulae:

	$(\Rightarrow \mid \land) = \Pi \Rightarrow \land \mid \Theta, \varphi$	$\Pi \Rightarrow \Lambda \mid \Theta, \psi$	$\varphi, \psi, \Xi \Rightarrow \Upsilon \mid \Omega $
$\Sigma \Rightarrow \Delta, \varphi \wedge \psi \mid \Gamma$	$(\Rightarrow \uparrow \land \land)$ $\Pi \Rightarrow \Lambda$	$\mid \Theta, \varphi \wedge \psi$	$\varphi \land \psi, \Xi \Rightarrow \Upsilon \mid \Omega \qquad (\land \varphi)$
$\Sigma, \Pi, \Xi \Rightarrow \Delta, \Lambda, \Upsilon \mid \Gamma, \Theta, \Omega$			(3 – 60

where the leftmost premiss is deduced by:

$$(\Rightarrow \land |) \frac{\varphi, \Sigma \Rightarrow \Delta, \psi \mid \Gamma \qquad \Sigma \Rightarrow \Delta, \varphi, \psi \mid \Gamma \qquad \psi, \Sigma \Rightarrow \Delta, \varphi \mid \Gamma}{\Sigma \Rightarrow \Delta, \varphi \land \psi \mid \Gamma}$$

Cut Admissibility for Falsificationist Version – principal cut-formulae:

| 米温ト 米温ト | |

Cut Admissibility for Falsificationist Version – principal cut-formulae:

where the leftmost premiss P is:

$$(3 - Cut) \frac{\Pi \Rightarrow \Lambda \mid \Theta, \psi \qquad \psi, \Sigma \Rightarrow \Delta, \varphi \mid \Gamma \qquad \Sigma \Rightarrow \Delta, \varphi, \psi \mid \Gamma}{(C) \frac{\Sigma, \Sigma, \Pi \Rightarrow \Delta, \Delta, \Lambda, \varphi \mid \Gamma, \Gamma, \Theta}{\Sigma, \Pi \Rightarrow \Delta, \Lambda, \varphi \mid \Gamma, \Theta}}$$

▶ ★ 唐 ► ★ 唐 ►