Describing Countable Structures

Matthew Harrison-Trainor

Victoria University of Wellington

Logic Colloquium 2019, Prague

How would you describe the group ${\mathbb Q}$ uniquely up to isomorphism?

It is the rank 1 divisible torsion-free abelian group.

- How complicated is this description?
- Is there a simpler description?

Outline

- 1. Scott sentence complexity
- 2. Computable structures of high Scott sentence complexity
- 3. Finitely generated structures and other algebraic structures

Outline

- 1. Scott sentence complexity
- 2. Computable structures of high Scott sentence complexity
- 3. Finitely generated structures and other algebraic structures

We write down descriptions in the logic $\mathcal{L}_{\omega_1\omega}$. Formulas are built using:

- equalities and inequalities of terms,
- relations,
- the connectives \land , \lor , and \neg ,
- the quantifiers $\exists x \text{ and } \forall x$.
- the countably infinite connectives \wedge and \vee .

The property of being a rank 1 divisible torsion-free abelian group can be expressed in $\mathcal{L}_{\omega_1\omega}$:

group axioms, e.g.:

$$(\forall x) \ x + 0 = 0 + x = x$$

abelian:

$$(\forall x \forall y) x + y = y + x$$

torsion-free:

$$(\forall x \neq 0) \bigwedge_{n \geq 1} nx \neq 0$$

rank 1:

$$(\forall x \forall y) \qquad \bigvee_{(n,m) \neq (0,0)} nx = my$$

divisible:

$$(\forall x) \bigwedge_{n \ge 1} (\exists y) x = ny$$

Infinitary logic is expressive enough to describe every countable structure.

Theorem (Scott 1965)

For every countable structure \mathcal{A} , there is an $\mathcal{L}_{\omega_1\omega}$ formula φ such that \mathcal{A} is the only countable structure satisfying φ .

We call any such sentence a Scott sentence for $\ensuremath{\mathcal{A}}.$

Main Idea Measure the complexity of a structure by the complexity of the simplest Scott sentence for that structure.

We can define a hierarchy of $\mathcal{L}_{\omega_1\omega}$ -formulas based on their quantifier complexity after putting them in normal form.

- A formula is Σ_0 and Π_0 is it is finitary quantifier-free.
- A formula is Σ_{α} if it looks like

$$\bigvee_{n\in\mathbb{N}} (\exists \bar{x})\varphi_n$$

where the φ are Π_{β} for $\beta < \alpha$.

• A formula is Π_{α} if it looks like

$$\bigwedge_{n\in\mathbb{N}} (\forall \bar{x})\varphi_n$$

where the φ are Σ_{β} for $\beta < \alpha$.

The vector space $\mathbb{Q}^{\mathbb{N}}$ has a Π_3 Scott sentence. We say that it is infinite-dimensional as follows:

$$\underbrace{\bigwedge_{n \in \mathbb{N}} \left(\exists x_1, \dots, x_n\right) \underbrace{\bigwedge_{c_1, \dots, c_n \in \mathbb{Q}} \left[\underbrace{c_1 x_1 + \dots + c_n x_n = 0 \rightarrow [c_1 = c_2 = \dots = c_n = 0]}_{\Sigma_0}\right]}_{\Gamma_1}_{\Gamma_3}$$

The property of being a rank 1 divisible torsion-free abelian group can be expressed in $\mathcal{L}_{\omega_1\omega}$:

group axioms, e.g.:

$$(\forall x) \ x + 0 = 0 + x = x \qquad (\Pi_1)$$

abelian:

$$(\forall x \forall y) \ x + y = y + x \tag{Π_1}$$

torsion-free:

$$(\forall x \neq 0) \bigwedge_{n \geq 1} nx \neq 0 \qquad (\Pi_1)$$

rank 1:

$$(\forall x \forall y) \bigvee_{(n,m) \neq (0,0)} nx = my \qquad (\Pi_2)$$

divisible:

$$(\forall x) \bigwedge_{n \ge 1} (\exists y) x = ny \qquad (\Pi_2)$$

The group \mathbb{Q} has a Π_2 Scott sentence.

One way of measuring the complexity of a structure is its Scott rank. Many different definitions of Scott rank have been put forward. They are almost, but not quite, equivalent. One is:

Definition (Montalbán)

The Scott rank of A is the least ordinal α such that A has a $\Pi_{\alpha+1}$ Scott sentence. This is a robust notion of complexity.

Theorem (Montalbán)

Let \mathcal{A} be a countable structure and let α a countable ordinal. The following are equivalent:

- \mathcal{A} has a $\Pi_{\alpha+1}$ Scott sentence.
- Every automorphism orbit in A is Σ_α-definable without parameters.
- \mathcal{A} is uniformly (boldface) $\mathbf{\Delta}^{0}_{\alpha}$ -categorical without parameters.

- A Scott sentence for the group $\ensuremath{\mathbb{Z}}$ consists of:
 - the axioms for torsion-free abelian groups,
 - for any two elements, there is an element which generates both,
 - there is a non-zero element with no proper divisors:

$$(\exists g \neq 0) \bigwedge_{n \geq 2} (\forall h) [nh \neq g].$$

These are, respectively, Π_1 , Π_2 , and Σ_2 . So the Scott sentence is the conjunction of a Π_2 sentence and a Σ_2 sentence.

The Scott rank of \mathbb{Z} is 2, the same as the vector space $\mathbb{Q}^{\mathbb{N}}$, even though \mathbb{Z} has a simpler Scott sentence.

Scott rank does not make all the distinctions that we want it to; we need a finer notion.

Definition

A formula is d- Σ_{α} if it is the conjunction of a Σ_{α} formula and a Π_{α} formula.

So the group $\mathbb Z$ has a d- Σ_2 Scott sentence.

The picture we have now looks like:

This is not a complete picture; there are other possible complexities.

We want to make the following definition, but we have not been able to say formally what a "complexity" of a sentence is.

Definition

The Scott sentence complexity of a countable structure \mathcal{A} is the least complexity of a Scott sentence for \mathcal{A} .

There are some restrictions on the possible Scott complexities of structures.

For example, Σ_{ω} is not a possible Scott sentence complexity: Suppose A has a Σ_{ω} Scott sentence

 $\varphi_1 \vee \varphi_2 \vee \varphi_3 \vee \varphi_4 \vee \cdots$

where each φ_i is Σ_n for some *n*. For some *i*, $\mathcal{A} \vDash \varphi_i$. Then φ_i is a Σ_n Scott sentence for \mathcal{A} .

A deeper theorem is:

Theorem (A. Miller)

Let \mathcal{A} be a countable structure. If \mathcal{A} has a $\Sigma_{\alpha+1}$ Scott sentence, and also has a $\Pi_{\alpha+1}$ Scott sentence, then \mathcal{A} has a d- Σ_{α} Scott sentence.

To make this more formal, we turn to Wadge degrees.

Fix a language \mathcal{L} , and for simplicity assume that \mathcal{L} is relational. We can view the space of \mathcal{L} -structures with domain ω as a Polish space isomorphic to Cantor space 2^{ω} . Call this $Mod(\mathcal{L})$.

E.g., if $\mathcal{L} = \{R\}$ with R unary, associate to an \mathcal{L} -structure $\mathcal{M} = (\omega, R^{\mathcal{M}})$ the element $\alpha \in 2^{\omega}$ with

$$\alpha(n) = \begin{cases} 0 & n \notin R^{\mathcal{M}} \\ 1 & n \in R^{\mathcal{M}} \end{cases}$$

Lopez-Escobar proved a powerful theorem relating $\mathcal{L}_{\omega_1\omega}$ classes and Borel sets in $Mod(\mathcal{L})$. Vaught proved a level-by-level version of this theorem:

Theorem (Vaught)

Let \mathbb{K} be a subclass of $Mod(\mathcal{L})$ which is closed under isomorphism.

$$\mathbb{K}$$
 is $\mathbf{\Sigma}^0_{\alpha}$ in the Borel hierarchy.
 \updownarrow
 \mathbb{K} is axiomatized by an infinitary $\mathbf{\Sigma}_{\alpha}$ sentence.

The same is true for Π^0_{α} and Π_{α} , the Ershov hierarchy (including d- Σ_{α}), etc.

We measure the complexity of subsets of $\mathsf{Mod}(\mathcal{L})$ using the Wadge hierarchy.

Definition (Wadge)

Let A and B be subsets of Cantor space 2^{ω} . We say that A is Wadge reducible to B, and write $A \leq_W B$, if there is a continuous function f on 2^{ω} with $A = f^{-1}[B]$, i.e.

$$x \in A \iff f(x) \in B.$$

The Wadge hierarchy has a lot of structure.

Theorem (Martin and Monk, AD) The Wadge order is well-founded.

Theorem (Wadge's Lemma, AD) Given $A, B \subseteq \omega^{\omega}$, either $A \leq_W B$ or $B \leq_W \omega^{\omega} - A$. Given a countable structure \mathcal{A} , let $Iso(\mathcal{A})$ be the set of isomorphic copies of \mathcal{A} in $Mod(\mathcal{L})$.

By the Lopez-Escobar theorem, informally we see that the complexity of Scott sentences for \mathcal{A} corresponds to the location of $Iso(\mathcal{A})$ in the Wadge hierarchy.

Definition

The Scott sentence complexity of a structure A is the Wadge degree of Iso(A).

Theorem (A. Miller 1983, Alvir-Greenberg-HT-Turetsky)

The possible Scott complexities of countable structures A are:

- 1. Π_{α} for $\alpha \geq 1$,
- 2. Σ_{α} for $\alpha \geq 3$ a successor ordinal,
- 3. $d-\Sigma_{\alpha}^{0}$ for $\alpha \geq 1$ a successor ordinal.

There is a countable structure with each of these Wadge degrees.

Wadge's Lemma is the key ingredient to narrow it down to these possibilities.

That Σ_2 is not possible was shown by A. Miller for relational structures and by Alvir-Greenberg-HT-Turetsky for general structures.

A. Miller constructed examples of most of these except for $\Sigma_{\lambda+1}$ for λ a limit ordinal; these were constructed by Alvir-Greenberg-HT-Turetsky.

Proposition (Montalbán, Alvir-Greenberg-HT-Turetsky)

Let \mathcal{A} be a countable structure. Then:

- 1. A has a $\Sigma_{\alpha+1}$ Scott sentence if and only if for some $\bar{c} \in A$, (A, \bar{c}) has a Π_{α} Scott sentence.
- 2. A has a $d-\Sigma_{\alpha}$ Scott sentence if and only if for some $\bar{c} \in A$, (A, \bar{c}) has a Π_{α} Scott sentence and the automorphism orbit of \bar{c} is Σ_{α} -definable.

Theorem (Montalbán)

Let α a countable ordinal. The following are equivalent:

- \mathcal{A} has a $\Sigma^0_{\alpha+2}$ Scott sentence.
- There are parameters over which every automorphism orbit in \mathcal{A} is Σ^0_{α} -definable.
- \mathcal{A} is relatively (boldface) $\mathbf{\Delta}^{0}_{\alpha}$ -categorical

Outline

- 1. Scott sentence complexity
- 2. Computable structures of high Scott sentence complexity
- 3. Finitely generated structures and other algebraic structures

A computable structure is a structure with domain ω all of whose relations and functions are uniformly computable.

A computable $\mathcal{L}_{\omega_1\omega}$ formula is one in which all of the infinitary conjunctions and disjunctions are effective.

The ordinal ω_1^{CK} is the least ordinal which is not computable. (Given $x \in 2^{\omega}$, ω_1^x is the least ordinal which is not x-computable.) Every computable $\mathcal{L}_{\omega_1\omega}$ formula is Σ_{α} for some $\alpha < \omega_1^{CK}$. Nadel analysed the Scott sentences of computable structures. Theorem (Nadel 1974)

- Every computable structure has a $\Pi_{\omega_1^{CK}+2}$ Scott sentence.
- A computable structure has a computable Scott sentence if and only if it has Scott sentence complexity strictly less than Π_{ω1}^{CK}.

We say that a structure has high Scott sentence complexity / high Scott rank if it has Scott sentence complexity $\Pi_{\omega_1^{CK}}$ or higher / Scott rank ω_1^{CK} or higher.

A structure has low Scott sentence complexity if and only if it has a computable Scott sentence.

Until recently we thought of structures of high Scott rank as being divided into two possible ranks: ω_1^{CK} and $\omega_1^{CK} + 1$.

Now, there are five possible Scott sentence complexities for a computable structure of high Scott sentence complexity.

For a computable structure, having a Scott sentence of the form on the left is equivalent to the condition on the right:

$$\Pi_{\omega_1^{CK}}$$
 : computable infinitary theory is \aleph_0 -categorical.

- $\Pi_{\omega_1^{CK}} + 1$: each automorphism orbit is definable by a computable formula.
- $$\begin{split} \Sigma_{\omega_1^{CK}+1} & : & \text{after naming constants, computable infinitary} \\ & \text{theory is } \aleph_0\text{-categorical.} \end{split}$$
- $\begin{array}{lll} {\rm d}\text{-}\Sigma_{\omega_1^{CK}+1} & : & {\rm each \ automorphism \ orbit \ is \ definable \ by \ a \ computable} \\ & {\rm formula \ over \ parameters \ which \ are \ }\Sigma_{\omega_1^{CK}+1}\text{-definable}. \end{array}$

 $\Pi_{\omega_1^{CK}+2}$: always.

The first structure of high Scott sentence complexity was constructed by Harrison.

Theorem (Harrison)

There is a computable order of order type $\omega_1^{CK} \cdot (1 + \mathbb{Q})$. This has Scott sentence complexity $\prod_{\omega_1^{CK}+2}$.

The Harrison linear order is natural: There is a computable operator $x \mapsto H_x$ such that H_x is a linear order of order type $\omega_1^x(1 + \mathbb{Q})$.

In a sense, all natural structure of high Scott sentence complexity have Scott sentence complexity $\Pi_{\omega_{r}^{CK}+2}$.

Theorem (Becker, Chan-HT-Marks) If $x \mapsto A_x$ is a Borel operator such that

$$\omega_1^{\mathsf{X}} = \omega_1^{\mathsf{Y}} \Longrightarrow \mathcal{A}_{\mathsf{X}} \cong \mathcal{A}_{\mathsf{Y}}$$

then for some x, A_x has Scott sentence complexity $\Pi_{\omega_1^x+2}$.

The second type of structure of high Scott sentence complexity was constructed by Makkai, Knight, and Millar.

Theorem (Makkai, Knight-Millar)

There is a computable structure of Scott sentence complexity $\Pi_{\omega_1^{CK}}.$

The computable infinitary theory of such a structure is \aleph_0 -categorical.

Millar and Sacks asked whether there is a computable structure of Scott rank ω_1^{CK} whose computable infinitary theory is not \aleph_0 -categorical. (Millar and Sacks had produced such a structure which was not computable, but which had $\omega_1^{\mathcal{A}} = \omega_1^{CK}$.)

This is exactly the same as asking for a computable structure of Scott sentence complexity $\Pi_{\omega_{1}^{CK}+1}$.

Theorem (HT-Igusa-Knight)

There is a computable structure of Scott sentence complexity $\Pi_{\omega_1^{CK}+1}.$

Another open question was whether there is a computable structure of Scott rank ω_1^{CK} +1 which has Scott rank ω_1^{CK} after naming constants.

It turned out that this is the same as asking for a computable structure of Scott sentence complexity $\Sigma_{\omega_1^{CK}+1}$ or d- $\Sigma_{\omega_1^{CK}+1}$.

Theorem (Alvir-Greenberg-HT-Turetsky)

There are computable structures of Scott sentence complexity $\Sigma_{\omega_1^{CK}+1}$ and d- $\Sigma_{\omega_1^{CK}+1}$.

The possible Scott complexities were:

We have examples of all of these!

There are some other kinds of examples of structure of high Scott sentence complexity.

Theorem (HT)

There is a computable structure A of high Scott sentence complexity which is not computably approximable. (There is a Π_2 sentence φ true of A such that every model of φ has high Scott sentence complexity.)

Theorem (Turetsky)

There is a computably categorical structure of high Scott sentence complexity.

These are properties none of the other examples had.

Outline

- 1. Scott sentence complexity
- 2. Computable structures of high Scott sentence complexity
- 3. Finitely generated structures and other algebraic structures

Recall that a structure is finitely generated if there is a finite tuple \bar{a} of elements such that every element is the image of \bar{a} under some composition of functions.

Theorem (Knight-Saraph)

Every finitely generated structure has a Σ_3 Scott sentence.

Often there is a simpler Scott sentence; we have already seen the example of the group $\mathbb Z,$ which has a d- Σ_2 Scott sentence.

It seemed like most finitely generated groups have a d- $\!\Sigma_2$ Scott sentence.

Theorem (Knight-Saraph, CHKLMMMQW, Ho) The following groups all have $d-\Sigma_2$ Scott sentences:

- abelian groups,
- free groups,
- nilpotent groups,
- polycyclic groups,
- lamplighter groups,
- Baumslag-Solitar groups BS(1, n).

Knight asked: Is this always the case?

Theorem (A. Miller, HT-Ho, Alvir-Knight-McCoy) Let A be a finitely generated structure. The following are equivalent:

- A has a Π₃ Scott sentence.
- \mathcal{A} has a d- Σ_2 Scott sentence.
- \mathcal{A} is the only model of its Σ_2 theory.
- some generating tuple of A is defined by a Π_1 formula.
- every generating tuple of A is defined by a Π_1 formula.
- A does not contain a copy of itself as a proper Σ₁-elementary substructure.

Theorem (HT-Ho)

There is a finitely generated group G which does not have a d- Σ_2 Scott sentence.

Open Question

Does every finitely presented group have a d- Σ_2 Scott sentence?

Theorem (HT)

A random finitely presented group has a d- Σ_2 Scott sentence.

Theorem (HT)

Every finitely generated commutative ring has a d- Σ_2 Scott sentence.

Simple classes; every structure has a d- Σ_2 Scott sentence:

- abelian groups, (Knight-Saraph)
- free groups, (CHKLMMMQW)
- torsion-free hyperbolic groups, (HT)
- vector spaces, (Folklore)
- ▶ fields, (нт-н₀)
- commutative rings, (HT)
- modules over Noetherian rings. (HT)

Complicated classes; there is a structure with no d- $\boldsymbol{\Sigma}_2$ Scott sentence:

- ▶ groups, (нт-н₀)
- rings, (нт-н₀)
- ▶ modules. (HT)

The Nielson transformations give us a very good understanding of bases for free groups.

Theorem (CHKLMMMQW)

The free group on countably many generators has a Π_4 Scott sentence.

We do not have such an understanding for pure transcendental fields.

Open Question

What is the Scott sentence complexity of the field $\mathbb{Q}(x_1, x_2, \ldots)$?

Thanks!