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The cardinal invariants of the continuum are uncountable cardinals whose
size is at most the cardinality of the real numbers. We are mostly
interested in cardinals with a nice topological or combinatorial definition.

1 By ω we denote the set (cardinal) of the natural numbers.

2 By c we denote the cardinality of the real numbers.
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1 The cardinal invariants of the continuum are cardinals j such that:

ω < j ≤ c

2 The Continuum Hypothesis (CH) is the following statement:

c is the first uncountable cardinal

3 All cardinal invariants are c under CH.

4 Martin’s Axiom (MA) implies that most cardinal invariants are c.
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We are interested in studying the relationships between different cardinal
invariants.
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a almost disjointness number
b bounding number
c cardinality of the continuum
d dominating number
e evasion number
f free sequence number
g groupwise number
h distributivity number
i independence number
j
k
l Laver property number
m Martin’s number
n Novak’s number (might be bigger than c)
o the offbranch number
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p pseudointersection number
q Q-set number
r reaping number
s splitting number
p tower number
u ultrafilter number
v
w
x
y
z sequence number
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Definition

An infinite family A ⊆ [ω]ω is almost disjoint (AD) if the intersection of
any two different elements of A is finite. A MAD family is a maximal
almost disjoint family.

The almost disjointness number a is the smallest size of a MAD family.
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We say that a family F ⊆ ℘ (ω) is a filter1 if the following conditions hold:

1 ω ∈ F and ∅ /∈ F .

2 If A,B ∈ F then A∩ B ∈ F .

3 If A ∈ F and A ⊆ B then B ∈ F .

4 F ∩ [ω]<ω = ∅.

The concept of a filter formalizes a kind of “largeness” notion, the
elements which belong to the filter are regarded as large, while its
complements are regarded as small. An ultrafilter is a maximal filter.

1By ω se denote the set of natural numbers.
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1 In the same way as with MAD families, we could define an invariant
as “the smallest size of an ultrafilter” but this invariant will be c.

2 We need the notion of an ultrafilter base.
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Definition

We say that B ⊆ [ω]ω is an ultrafilter base if the set
{A | ∃B ∈ B (B ⊆ A)} is an ultrafilter.

1 The ultrafilter number u denotes the smallest size of a base for an
ultrafilter on ω.
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a the smallest size of a MAD family
u the smallest size of a base for an ultrafilter on ω.

1 a and u are cardinal invariants.

2 ω ≤ a, u ≤ c.

3 What is the relationship between them?
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History

1 If we assume the Continuum Hypothesis, then ω1 = a = u = c.

2 The consistency of the inequality a < u is well known and easy to
prove, in fact, it holds in the Cohen, random and Silver models,
among many others.

3 Proving the consistency of the inequality u < a is much harder and
used to be an open problem for a long time. In fact, it follows by the
theorems of Hrušák, Moore and Džamonja that the inequality u < a
can not be obtained by using countable support iteration of proper
Borel partial orders.
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The consistency of u < a was finally established by Shelah, when he
proved the following theorem:

Theorem (Shelah)

Let V be a model of GCH, κ a measurable cardinal and µ, λ two regular
cardinals such that κ < µ < λ. There is a c.c.c. forcing extension of V
that satisfies µ = b = d = u and λ = a = c. In particular, CON(ZFC +
“there is a measurable cardinal”) implies CON(ZFC + “u < a”).
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Theorem (Shelah)

Let V be a model of GCH, κ a measurable cardinal. There is a c.c.c.
forcing extension of V that satisfies u = κ+ and a = c = κ++. In
particular, CON(ZFC + “there is a measurable cardinal”) implies
CON(ZFC + “u < a”).

This theorem was one of the first results proved using “template
iterations”, which is a very powerful method that has been very useful and
has been successfully applied to this day. In spite of the beauty of this
result, it leaves open the following questions:

Problem (Shelah)

Does CON(ZFC) imply CON(ZFC + “u < a”)?

Problem (Brendle)

Is it consistent that ω1 = u < a?
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With Damjan Kalajdzievski, we were able provide a positive answer to both
questions, by proving (without appealing to large cardinals) that every
MAD family can be destroyed by a proper forcing that preserves P-points.
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The method of forcing consists of adding a new set to the universe, in a
similar way as adding a new root to a field. Forcing extensions are
performed using partial orders.

In our case, we want to add a new set that destroys the maximality of a
given MAD family, while preserving an ultrafilter base (of a P-point).
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Definition

Let P be a partial order, F a filter and U an ultrafilter.

1 P diagonalizes F if P adds an infinite set almost contained in every
element of F .

2 P preserves U if U is the base of an ultrafilter after forcing with P.

There are two usual forcings for diagonalizing a filter.
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Definition

The Laver forcing L (F ) with respect to F is the set of all trees p such
that sucp (s) ∈ F for every s ∈ p extending the stem of p (where
sucp (s) = {n | s_n ∈ p}). We say p ≤ q if p ⊆ q.

Definition

If F is a filter on ω (or on any countable set) we define the Mathias
forcing M (F ) with respect to F as the set of all pairs (s,A) where
s ∈ [ω]<ω and A ∈ F . If (s,A) , (t,B) ∈M (F ) then (s,A) ≤ (t,B) if
the following conditions hold:

1 t is an initial segment of s.

2 A ⊆ B.

3 (s \ t) ⊆ B.
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1 Let f , g ∈ ωω, define f ≤∗ g if and only if f (n) ≤ g (n) holds for all
n ∈ ω except finitely many. We say a family B ⊆ ωω is unbounded if
B is unbounded with respect to ≤∗ .

2 The bounding number b is the size of the smallest unbounded family.

3 We say that S splits X if S ∩ X and X \ S are both infinite. A family
S ⊆ [ω]ω is a splitting family if for every X ∈ [ω]ω there is S ∈ S
such that S splits X .

4 The splitting number s is the smallest size of a splitting family.
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It is not difficult to prove that b ≤ a and b ≤ u.

Our model will be a model of ω1 = b = u < a = s = ω2. We will first
explain how to build a model of u < s.
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Theorem (Blass-Shelah)

The inequality u < s is consistent.

It is easy to see that diagonalizing an ultrafilter destroys all ground model
splitting families. In this way, if we want to build a model of u < s, we
need to diagonalize an ultrafilter, while preserving another one (in fact,
preserving a P-point). This topic has also been recently studied by Heike
Mildenberger.
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While L (F ) always adds a dominating real, this may not be the case for
M (F ) . A trivial example is taking F to be the cofinite filter in ω, since in
this case M (F ) is forcing equivalent to Cohen forcing. A more interesting
example was found by Canjar, where an ultrafilter whose Mathias forcing
does not add dominating reals was constructed under d = c.

Definition

We say that a filter F is Canjar if M (F ) does not add dominating reals.

In order to provide a combinatorial characterization of the previous notion,
we need the following definition:
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Definition

Let F be a filter on ω. Define the filter F<ω in [ω]<ω \ {∅} as the filter
generated by

{
[A]<ω \ {∅} | A ∈ F

}
.

Note that if X ⊆ [ω]<ω \ {∅} , then X ∈ (F<ω)+ if and only if for every
A ∈ F , there is s ∈ X such that s ⊆ A.
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Theorem

Let F be a filter on ω. The following are equivalent:

1 F is Canjar.

2 (Hrušák, Minami) For every {Xn | n ∈ ω} ⊆ (F<ω)+ there are
Yn ∈ [Xn]

<ω such that
⋃

n∈ω
Yn ∈ (F<ω)+.

3 (Chodounský, Repovš and Zdomskyy) F is Menger (as a subspace of
℘ (ω) ' 2ω).a

aWe view filters as subspaces of 2ω, the notion of Borel or Fσ is taken using
the usual topology on 2ω.
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Let F be a filter. The Canjar game GCanjar (F ) is defined as follows:

I X0 X1 X2 ...

II Y0 Y1 Y2

Where Xi ∈ (F<ω)+ and Yi ∈ [Xi ]
<ω for every i ∈ ω. The player II wins

the game GCanjar (F ) if
⋃

n∈ω
Yn ∈ (F<ω)+ .
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Theorem (Chodounský, Repovš and Zdomskyy)

Let F be a filter on ω. The following are equivalent:

1 F is Canjar.

2 Player I does not have a winning strategy in GCanjar (F ) .
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Definition

U is a P-point if every countable subfamily B ⊆ U there is A ∈ U such
that A \ B is finite for every B ∈ B.
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Let U be an ultrafilter. Recall that the P-point game GP-point (U ) is
defined as follows:

I W0 W1 ...

II z0 z1

Where Wi ∈ U and zi ∈ [Wi ]
<ω . The player II will win the game

GP-point (U ) if
⋃

m∈ω
zm ∈ U . It is well known that player II can not have a

winning strategy for this game. The following is a well known result of
Galvin and Shelah:

Theorem (Galvin-Shelah)

Let U be an ultrafilter. U is a P-point if and only if Player I does not have
a winning strategy in GP-point (U ) .
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Let G and H be two (infinite) games:

G : I a0 a1 ...

II b0 b1

H : I c0 c1 ...

II d0 d1

We define the game G ∗ H as follows:

G ∗ H : I a0 c0 a1 c1 ...

II b0 d0 b1 d1

Where 〈ai ,bi 〉i∈ω is played according to G and 〈ci , di 〉i∈ω is played
according to H. Player II will win G ∗ H is 〈ai ,bi 〉i∈ω is a winning run for
Player II in G and 〈ci , di 〉i∈ω is a winning run for Player II in H.
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Let G and H be two games. It seems obvious that if Player I does not
have a winning strategy for G or H, then he will not have a winning
strategy for G ∗ H ... but this is false.

If U is a P-point, then it is easy to see that Player I has a winning strategy
for GP-point (U ) ∗ GP-point (U ) .
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Definition

Let F be a Canjar filter and W a P-point. We say that F is W-Canjar if
Player I does not have a winning strategy for GCanjar (F ) ∗ GP-point (W) .

Theorem

Let F be a Canjar filter and W a P-point. If F is W-Canjar, then there is
a proper forcing PT (F ) that diagonalizes F and preserves W .
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Theorem

Let F be a Canjar filter and W a P-point. If F is W-Canjar, then there is
a proper forcing PT (F ) that diagonalizes F and preserves W .

Well... this is not entirely correct, the correct definition of W-Canjar is
slightly more complicated, but in the same spirit (only a bit more
complicated) as the one presented in the slides.
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Theorem

There is a σ-closed forcing P that adds a Canjar ultrafilter U that is
W-Canjar for every ground model P-point W .

Iterating P ∗PT (U ) will produce a model of ω1 = u < s.
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Theorem

Let A be a MAD family. There is a σ-closed forcing PA that adds a
Canjar ultrafilter UA disjoint from A that is W-Canjar for every ground
model P-point W .

Iterating forcings of the type PA ∗PT (UA) will produce a model of
ω1 = u < a = s.
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Thank you for your attention!
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Let p ⊆ ω<ω be a tree. If s ∈ p, define sucp (s) = {n | s_n ∈ p} . In this
talk, we will say that s ∈ p is a splitting node if sucp (s) is infinite.

Definition

We say that a tree p ⊆ ω<ω is a Miller tree (p ∈ PT) if the following
conditions hold:

1 p consists of increasing sequences.

2 p has a stem (t is the stem of p if every node of p is compatible with
t and t is maximal with this property).

3 For every s ∈ p, there is t ∈ p such that s ⊆ t and t is a splitting
node.
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If X ⊆ [ω]<ω \ {∅} , then X ∈ (F<ω)+ if and only if for every A ∈ F ,
there is s ∈ X such that s ⊆ A.

By split (p) we denote the collection of all splitting nodes and by splitn (p)
we denote the collection of n-splitting nodes (i.e. s ∈ splitn (p) if
s ∈ split (p) and s has exactly n-restrictions that are splitting nodes).
Given p ∈ PT for every s ∈ splitn (p) we define
F (p, s) = {t \ s | t ∈ splitn+1 (p) ∧ s ⊆ t} .

Definition

Let F be a filter. We say p ∈ PT (F ) if the following holds:

1 p ∈ PT.

2 If s ∈ split (p) then F (p, s) ∈ (F<ω)+ .

We order PT (F ) by inclusion.
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Definition

Let I be an ideal on ω. We define Fσ (I) as the collection of all Fσ-filters
F such that F ∩ I = ∅. We order Fσ (I) by inclusion.

Lemma

Let I be an ideal on ω.

1 Fσ (I) is a σ-closed forcing.

2 Fσ (I) adds an ultrafilter (which we will denote by Ugen (I)) disjoint
from I .

3 Fσ (I) ∗PT(U̇gen(I))and Fσ (I) ∗M(U̇gen(I)) are proper forcings
that destroy I .

If A is a MAD family, we will denote Fσ (A) instead of Fσ (I (A)) and
Ugen (A) instead of Ugen (I (A)) . Note that Fσ

(
[ω]<ω) is the collection

of all Fσ-filters. In this case, we will only denote it by Fσ and by Ugen we
will denote the generic ultrafilter added by Fσ.
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Theorem

Let W be a P-point and A a MAD family.

1 If F is an Fσ-filter, then PT (F ) preserves W .

2 Fσ forces that PT
(
U̇gen

)
preserves W .

3 Fσ (A) forces that PT
(
U̇gen (A)

)
preserves W .
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