► EMANUELE FRITTAION, *The uniform reflection principle in second order arithmetic*. School of Mathematics, University of Leeds.

E-mail: emanuelefrittaion@gmail.com.

I will discuss the full uniform reflection principle in the context of second order arithmetic. I will show how by formalizing a minimum of infinitary proof theory (ω -logic) in a sufficietly strong fragment of second order arithmetic, such as the reverse mathematics base system known as RCA₀ (recursive comprehension axiom), one can give a proof of the following folklore result. Let T_0 be a finitely axiomatizable subsystem of second order arithmetic as strong as RCA₀. Then adding the uniform reflection principle RFN(T_0) is equivalent to adding full induction. On the other hand, adding the uniform reflection principle RFN(T), where T is T_0 together with full induction, is equivalent to adding full transfinite induction up to ε_0

[1] GEORG KREISEL AND AZRIEL LÉVY, Reflection principles and their use for establishing the complexity of axiomatic systems, Mathematical Logic Quarterly, 14(7-12):97–142, 1968.

[2] GRIGORI MINTS, Finite investigations of transfinite derivations, Journal of Soviet Mathematics, 10(4):548–596, 1978.