JOANNA JURECZKO, New results on partitioner-representable algebras. Faculty of Electronics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław.

E-mail: joanna.jureczko@pwr.edu.pl.

In 1982 Baumgartner and Weese introduced the natural notion of partitioners.

Remind that if F is a mad family, then a set $a \subseteq \omega$ is called a *paritioner* of F iff for all $b \in F$ either b - a or $b \cap a$ is finite. Then, if \mathbb{B} is a Boolean algebra and I is an ideal in \mathbb{B} generated by F and finite sets, the algebra \mathbb{B}/I is called the *partition algebra* of F. If a Boolean algebra is isomorphic to the partition algebra of some mad family, then such an algebra is called to be *representable*.

In [1] the authors proved several important theorems in this subject, among others they showed that under (CH) each Boolean algebra of cardinality $\leq c$ is representable. They also show that there are algebras which are non-representable in some models.

The authors in [1] also posed a number of problems which were solved later, (see [3]). We will show the solution of Problem 3: Must every representable algebra be embeddable in $P(\omega)/fin$? Among others we will show that there are some models in which $P(\omega_1)$ is embeddable in $P(\omega)/fin$ but not representable, and conversely. The most our unexpected result is that there is a model in which $P(\omega)/fin$ is not representable. During the talk we also present some related results. This is the joint work with Ryszard Frankiewicz.

[1] BAUMGARTNER J.E. AND WEESE M., Partition algebras for almost-disjoint families, Transactions of American Mathematical Society, vol. 274 (1982), no. 2, pp. 619-630.

[2] FRANKIEWICZ R., Some remarks on embeddings of Boolean algebras and topological spaces, II, Fundamenta Mathematicae, vol. 126 (1985), no. 1, pp. 63–68.

[3] FRANKIEWICZ R. AND ZBIERSKI P., *Hausdorff gaps and limits*. Studies in Logic and the Foundations of Mathematics, vol. 132, North-Holland, 1984.