DMITRY EMELYANOV, BEIBUT KULPESHOV, SERGEY SUDOPLATOV, On compositions of structures and compositions of theories.

Novosibirsk State Technical University, Novosibirsk, Russia.

E-mail: dima-pavlyk@mail.ru.

International Information Technology University, Almaty, Kazakhstan.

E-mail: b.kulpeshov@iitu.kz.

Sobolev Institute of Mathematics, Novosibirsk State Technical University, Novosibirsk State University, Novosibirsk, Russia.

E-mail: sudoplat@math.nsc.ru.

We consider both compositions of structures and compositions of theories and apply these compositions obtaining compositions of algebras of binary formulas [1].

Let \mathcal{M} and \mathcal{N} be structures of relational languages $\Sigma_{\mathcal{M}}$ and $\Sigma_{\mathcal{N}}$, respectively. We define the composition $\mathcal{M}[\mathcal{N}]$ of \mathcal{M} and \mathcal{N} satisfying $\Sigma_{\mathcal{M}[\mathcal{N}]} = \Sigma_{\mathcal{M}} \cup \Sigma_{\mathcal{N}}, M[N] = M \times N$ and the following conditions:

1) if $R \in \Sigma_{\mathcal{M}} \setminus \Sigma_{\mathcal{N}}$, $\mu(R) = n$, then $((a_1, b_1), \dots, (a_n, b_n)) \in R_{\mathcal{M}[\mathcal{N}]}$ if and only if $(a_1, \dots, a_n) \in R_{\mathcal{M}}$;

2) if $R \in \Sigma_{\mathcal{N}} \setminus \Sigma_{\mathcal{M}}$, $\mu(R) = n$, then $((a_1, b_1), \ldots, (a_n, b_n)) \in R_{\mathcal{M}[\mathcal{N}]}$ if and only if $a_1 = \ldots = a_n$ and $(b_1, \ldots, b_n) \in R_{\mathcal{N}}$;

3) if $R \in \Sigma_{\mathcal{M}} \cap \Sigma_{\mathcal{N}}$, $\mu(R) = n$, then $((a_1, b_1), \dots, (a_n, b_n)) \in R_{\mathcal{M}[\mathcal{N}]}$ if and only if $(a_1, \dots, a_n) \in R_{\mathcal{M}}$, or $a_1 = \dots = a_n$ and $(b_1, \dots, b_n) \in R_{\mathcal{N}}$.

The theory $T = \text{Th}(\mathcal{M}[\mathcal{N}])$ is called the *composition* $T_1[T_2]$ of the theories $T_1 = \text{Th}(\mathcal{M})$ and $T_2 = \text{Th}(\mathcal{N})$.

THEOREM 1. If \mathcal{M} and \mathcal{N} have transitive automorphism groups then $\mathcal{M}[\mathcal{N}]$ has a transitive automorphism group, too.

By Theorem 1, $T = \text{Th}(\mathcal{M}[\mathcal{N}])$ is transitive, and the operation $\mathcal{M}[\mathcal{N}]$ can be considered as a variant of transitive arrangements of structures [2].

The composition $\mathcal{M}[\mathcal{N}]$ is called *E*-definable if $\mathcal{M}[\mathcal{N}]$ has an \emptyset -definable equivalence relation *E* whose *E*-classes are universes of the copies of \mathcal{N} forming $\mathcal{M}[\mathcal{N}]$. By the definition, each *E*-definable composition $\mathcal{M}[\mathcal{N}]$ is represented as a *E*-combination [3] of copies of \mathcal{N} with an extra-structure generated by predicates on \mathcal{M} and linking elements of the copies of \mathcal{N} .

THEOREM 2. If a composition $\mathcal{M}[\mathcal{N}]$ is *E*-definable then the theory $\operatorname{Th}(\mathcal{M}[\mathcal{N}])$ uniquely defines the theories $\operatorname{Th}(\mathcal{M})$ and $\operatorname{Th}(\mathcal{N})$, and vice versa.

THEOREM 3. If a composition $\mathcal{M}[\mathcal{N}]$ is E-definable then the algebra \mathfrak{P}_T of binary isolating formulas for $T = \text{Th}(\mathcal{M}[\mathcal{N}])$ is isomorphic to the composition $\mathfrak{P}_{T_1}[\mathfrak{P}_{T_2}]$ of the algebras \mathfrak{P}_{T_1} and \mathfrak{P}_{T_2} of binary isolating formulas for $T_1 = \text{Th}(\mathcal{M})$ and $T_2 = \text{Th}(\mathcal{N})$.

[1] I.V. SHULEPOV, S.V. SUDOPLATOV, Algebras of distributions for isolating formulas of a complete theory, Siberian Electronic Mathematical Reports, Vol. 11 (2014), pp. 362–389.

[2] S.V. SUDOPLATOV, Transitive arrangements of algebraic systems, Siberian Mathematical Journal, Vol. 40, Issue 6 (1999), pp. 1142–1145.

[3] S.V. SUDOPLATOV, Combinations of structures, The Bulletin of Irkutsk State University. Series "Mathematics", Vol. 24 (2018), pp. 65–84.