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A standard tool for classifying computability-theoretic complexity of equivalence
relations is provided by computable reducibility. Let E and F be equivalence relations
on ω. The relation E is computably reducible to F , denoted by E ≤c F , if there is a
total computable function f(x) such that for all x, y ∈ ω,

(xE y) ⇔ (f(x)F f(y)).

The systematic study of computable reducibility was initiated by Ershov [1, 2].
Let α be a computable non-zero ordinal. An equivalence relation R is Σ0

α complete
(for computable reducibility) if R ∈ Σ0

α and for any Σ0
α equivalence relation E, we have

E ≤c R. The article [3] provides many examples of Σ0
n complete equivalence relations,

which arise in a natural way in recursion theory. In [4], it was proved that for each
of the following classes K, the relation of computable isomorphism for computable
members of K is Σ0

3 complete: trees, equivalence structures, and Boolean algebras.
We prove that for any computable successor ordinal α, the relation of ∆0

α isomor-
phism for computable distributive lattices is Σ0

α+2 complete. We obtain similar results
for Heyting algebras, undirected graphs, and uniformly discrete metric spaces.
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