► NIKOLAY BAZHENOV, DINO ROSSEGGER, LUCA SAN MAURO AND MAXIM ZUBKOV, On bi-embeddable categoricity of linear orders.

Sobolev Institute of Mathematics, 4 Acad. Koptyug Ave., Novosibirsk, Russia; Novosibirsk State University, 2 Pirogova St., Novosibirsk, Russia.

E-mail: bazhenov@math.nsc.ru.

Institute of Discrete Mathematics and Geometry, Vienna University of Technology, Wiedner Hauptstrasse 8-10, 1040 Wien, Austria.

E-mail: dino.rosseger@tuwien.ac.at.

Institute of Discrete Mathematics and Geometry, Vienna University of Technology, Wiedner Hauptstrasse 8-10, 1040 Wien, Austria.

E-mail: luca.san.mauro@tuwien.ac.at.

N.I. Lobachevsky Institute of Mathematics and Mechanics, Kazan Federal University, Kremlevskaya 18, Kazan, Russia.

E-mail: maxim.zubkov@kpfu.ru.

Given a linear order \mathcal{L} and a linear order \mathcal{M} bi-embeddable with \mathcal{L} , we say that \mathcal{M} is a bi-embeddable copy of \mathcal{L} . We study the complexity of embeddings using the following definition analogous to computable categoricity.

DEFINITION 1. A countable linear order \mathcal{L} is (relatively) Δ_n^0 -bi-embeddably categorical if for any bi-embeddable computable (for any bi-embeddable) copy \mathcal{M} , \mathcal{M} and \mathcal{L} are bi-embeddable by Δ_n^0 -embeddings ($\Delta_n^{\mathcal{L}\oplus\mathcal{M}}$ -embeddings, correspondingly).

Recall, that a linear order is scattered if it has no a suborder of type η . It is easy to see, that the question about the level of bi-embeddable categoricity is nontrivial only for scattered linear orders. We obtain characterization of linear orders with finite levels of bi-embeddable categoricity.

THEOREM 2. A scattered computable linear order of rank n is relatively Δ_{2n}^0 -biembeddably categorical, and is not Δ_{2n-1}^0 -bi-embeddably categorical.

The last author was supported by RFBR grant No. 18-31-00174.