• ANDREY MOROZOV, JAMALBEK TUSSUPOV, On minimal elements in the Δ -reducibility on families of predicates.

Sobolev institute of mathematics SB RAS, Koptyug Ave. 4 and Novosibirsk state university, Pirogova str. 1, Novosibirsk, 630090, Russia.

E-mail: morozov@math.nsc.ru.

L.N. Gumilyov Eurasian National University, ul. Satpaeva 2, Astana, 010008, Kaza-khstan.

E-mail: tussupov@mail.ru.

Fix some countable set U. By *predicate* here we mean an arbitrary subset of an arbitrary finite Cartesian power of U. We study two kinds of reducibilities on finite families of predicates.

We say that a predicate R is Δ -definable over the predicates P_1, \ldots, P_k if R itself and its complement can be defined in the structure $\langle U; P_1, \ldots, P_k \rangle$ by means of \exists -formulas with parameters.

Let $S_0 = \{P_0, \ldots, P_{k-1}\}$ and S_1 be two finite families of predicates. We say that S_0 is Δ -definable in S_1 , if all the predicates in S_0 are Δ -definable in S_1 and we denote this fact as $S_0 \leq^0_{\Delta} S_1$. If $S_0 \leq^0_{\Delta} S_1$ and $S_1 \leq^0_{\Delta} S_0$ then we denote this fact as $S_0 \equiv^0_{\Delta} S_1$. The relation \leq^0_{Δ} is a preordering, \equiv^0_{Δ} is an equivalence and the quotient $\leq^0_{\Delta}/{\equiv^0_{\Delta}}$ defines an upper semilattice in which the least upper bound of elements $S_0/{\equiv^0_{\Delta}}$ and $S_1/{\equiv^0_{\Delta}}$ equals to $(S_0 \cup S_1)/{\equiv^0_{\Delta}}$ and $\perp^0_{\Delta} = \varnothing/{\equiv^0_{\Delta}}$ is the smallest element. Denote this semilattice by D^0_{Δ} .

If we consider families of predicates up to isomorphism, we arrive at the notion of Δ -reducibility on families of predicates. We say that a finite family of predicates S_0 Δ -reduces to a finite family S_1 (and denote this as $S_0 \leq \Delta S_1$), if there exists a finite family of predicates S' such that $S'_0 \leq^0_\Delta S_1$ and S'_0 is a conjugate of S_0 by means of some permutation on U.

If $S_0 \leq_{\Delta} S_1$ and $S_1 \leq_{\Delta} S_0$ then we denote this fact as $S_0 \equiv_{\Delta} S_1$. The quotient $\leq_{\Delta}/\equiv_{\Delta}$ defines a structure D_{Δ} , which is a partial order with smallest element $\perp_{\Delta} = \emptyset/\equiv_{\Delta}$.

Theorem 1

1. The structure D_{Δ} fails to be an upper semilattice.

2. The families consisting of unary predicates define in D_{Δ} an ideal of order type ω . **Theorem 2** Each of the structures $D_{\Delta}^0 \setminus \{\perp_{\Delta}^0\}$ and $D_{\Delta} \setminus \{\perp_{\Delta}\}$ contains 2^{ω} minimal elements.

Both the coauthors were partially supported by Committee of Science in Education and Science Ministry of the Republic of Kazakhstan (Grant No. AP05132349)