▶ NIKOLAY BAZHENOV, HRISTO GANCHEV, AND STEFAN VATEV, Computable embeddings for pairs of linear orderings.

Sobolev Institute of Mathematics, Novosibirsk, Russia and Novosibirsk State University, Novosibirsk, Russia.

E-mail: bazhenov@math.nsc.ru.

Sofia University, Faculty of Mathematics and Informatics, 5 James Bourchier blvd., 1164, Sofia, Bulgaria.

E-mail: ganchev@fmi.uni-sofia.bg.

Sofia University, Faculty of Mathematics and Informatics, 5 James Bourchier blvd., 1164, Sofia, Bulgaria.

E-mail: stefanv@fmi.uni-sofia.bg.

Friedman and Stanley [3] introduced the notion of *Borel embedding* to compare complexity of the classification problems for classes of countable structures. Calvert, Cummins, Knight, and Miller [1] (see also [2] and [4]) developed two notions, *computable embeddings* and *Turing computable embeddings*, as effective counterparts of Borel embeddings.

We follow the approach of [1] and study computable embeddings for pairs of structures, i.e. for classes \mathcal{K} containing precisely two non-isomorphic structures. Our motivation for investigating pairs of structures is two-fold. These pairs play an important role in computable structure theory and also they constitute the simplest case, which is significantly different from the case of one-element classes. It is not hard to show that for any computable structures \mathcal{A} and \mathcal{B} , the one-element classes { \mathcal{A} } and { \mathcal{B} } are equivalent with respect to computable embeddings. On the other hand, computable embeddings induce a non-trivial degree structure for two-element classes consisting of computable structures.

In this talk we will concentrate on the pair of linear orders ω and ω^* . By $\deg_{tc}(\{\omega, \omega^*\})$ we denote the degree of the class $\{\omega, \omega^*\}$ under Turing computable embeddings. Quite unexpectedly, it turns out that a seemingly simple problem of studying computable embeddings for classes from $\deg_{tc}(\{\omega, \omega^*\})$ requires developing new techniques.

We give a necessary and sufficient condition for a pair of structures $\{\mathcal{A}, \mathcal{B}\}$ to belong to deg_{tc}($\{\omega, \omega^*\}$). We also show that the pair $\{1+\eta, \eta+1\}$ is the greatest element inside deg_{tc}($\{\omega, \omega^*\}$), with respect to computable embeddings. More interestingly, we prove that inside deg_{tc}($\{\omega, \omega^*\}$), there is an infinite chain of degrees induced by computable embeddings.

[1] W. CALVERT, D. CUMMINS, J. F. KNIGHT, S. MILLER, Comparing classes of finite structures, Algebra Logic, vol. 43, (2004), no. 6, pp. 374–392.

[2] J. CHISHOLM, J. F. KNIGHT, S. MILLER, Computable embeddings and strongly minimal theories, Journal of Symbolic Logic, vol. 72 (2007), no. 3, pp. 1031–1040.

[3] H. FRIEDMAN, L. STANLEY, A Borel reducibility theory for classes of countable structures, Journal of Symbolic Logic vol. 54 (1989), no. 3, pp. 894–914.

[4] J. F. KNIGHT, S. MILLER, M. VANDEN BOOM, *Turing computable embeddings*, *Journal of Symbolic Logic*, vol. 72 (2007), no. 3, pp. 901–918.